
wellmap
Release 3.4.0

unknown

May 08, 2022

GETTING STARTED

1 Citation 3
1.1 Basic usage with python . 3
1.2 Basic usage with R . 8
1.3 Example layouts . 14
1.4 Related software . 18
1.5 Getting help . 19
1.6 File format . 19
1.7 Python API . 30
1.8 R API . 34
1.9 Command-line usage . 34
1.10 Versions . 35

Python Module Index 39

Index 41

i

ii

wellmap, Release 3.4.0

Many medium-throughput experiments produce data in 24-, 96-, or 384-well plate format. However, it can be a chal-
lenge to keep track of which wells (e.g. A1, B2, etc.) correspond to which experimental conditions (e.g. genotype, drug
concentration, replicate number, etc.) for large numbers of experiments. It can also be a challenge to write analysis
scripts flexible enough to handle the different plate layouts that will inevitably come up as more and more experiments
are run.

The wellmap package solves these challenges by introducing a TOML-based file format that succinctly describes the
organization of wells on plates. The file format is designed to be human-readable and -writable, so it can serve as a
standalone digital record. The file format can also be easily parsed in python and R to help write analysis scripts that
will work regardless of how you (or your collaborators) organize wells on your plates.

GETTING STARTED 1

https://pypi.python.org/pypi/wellmap
https://pypi.python.org/pypi/wellmap
http://wellmap.readthedocs.io/en/latest/basic_usage_with_r.html
http://wellmap.readthedocs.io/en/latest/
https://github.com/kalekundert/wellmap/actions
https://coveralls.io/github/kalekundert/wellmap?branch=master
https://wellmap.readthedocs.io/en/latest/file_format.html

wellmap, Release 3.4.0

2 GETTING STARTED

CHAPTER

ONE

CITATION

Kundert, K. Wellmap: a file format for microplate layouts. BMC Res Notes 14, 164 (2021). https://doi.org/10.1186/
s13104-021-05573-0

1.1 Basic usage with python

The following steps show how to get started with wellmap in python:

1. Install wellmap from PyPI. Note that python3.6 is required:

$ pip install wellmap

2. Write a TOML file describing the layout of an experiment. For example, the following layout might be used for
a standard curve:

Listing 1: std_curve.toml

The [row] and [col] sections specify which conditions are being tested in
which wells. The fields within these sections (e.g. `dilution`, `replicate`)
can be anything. If your plates aren't organized by row and column, there
are other ways to define the plate layout; see the "File format" section for
more details.

[col]
1.dilution = 1e5
2.dilution = 1e4
3.dilution = 1e3
4.dilution = 1e2
5.dilution = 1e1
6.dilution = 1e0

[row]
A.replicate = 1
B.replicate = 2
C.replicate = 3

3. Confirm that the layout is correct by using the wellmap command-line program to produce a visualization of the
layout. This is an important step, because it’s much easier to spot mistakes in the visualization than in the layout
file itself.

$ wellmap std_curve.toml

3

https://doi.org/10.1186/s13104-021-05573-0
https://doi.org/10.1186/s13104-021-05573-0

wellmap, Release 3.4.0

This map shows that:

• Each row is a different replicate.

• Each column is a different dilution.

It is also possible to create maps like this directly from python, which may be useful in interactive sessions such
as Jupyter notebooks:

>>> import wellmap
>>> wellmap.show("std_curve.toml")
<Figure size 321.203x255 with 4 Axes>

4. Load the data from the experiment in question into a tidy data frame. Tidy data are easier to work with in general,
and are required by wellmap in particular. If you aren’t familiar with the concept of tidy data, this article is a
good introduction. The basic idea is to ensure that:

• Each variable is represented by a single column.

• Each observation is represented by a single row.

If possible, it’s best to export data from the instrument that collected it directly to a tidy format. When this
isn’t possible, though, you’ll need to tidy the data yourself. For example, consider the following data (which
corresponds to the layout from above). This is qPCR data, where a higher 𝐶𝑞 value indicates that less material is
present. The data are shaped like the plate itself, e.g. a row in the data for every row on the plate, and a column
in the data for every column on the plate. It’s not uncommon for microplate instruments to export data in this
format.

Table 1: std_curve.csv
Cq 1 2 3 4 5 6
A 24.18085861206054720.7401199340820317.18380165100097713.77429962158203110.294982910156256.967061996459961
B 24.1571178436279320.7797031402587917.17179489135742213.76883125305175810.3629665374755866.870273113250732
C 24.23822975158691420.7870082855224617.14759826660156313.77931404113769510.2929668426513676.735703945159912

Below is the code to load this data into a tidy pandas.DataFrame with the following columns:

• row: A letter identifying a row on the microplate, e.g. A-H

• col: A number identifying a column on the microplate, e.g. 1-12

• Cq: The 𝐶𝑞 value measured for the identified well.

>>> import pandas as pd
>>> def load_cq(path):
... return (pd
... .read_csv(path)
... .rename(columns={'Cq': 'row'})
... .melt(
... id_vars=['row'],
... var_name='col',
... value_name='Cq',
...)
...)
>>> data = load_cq('std_curve.csv')
>>> data

row col Cq
(continues on next page)

4 Chapter 1. Citation

https://www.jstatsoft.org/article/view/v059i10
https://tomaugspurger.github.io/modern-5-tidy
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

wellmap, Release 3.4.0

(continued from previous page)

0 A 1 24.180859
1 B 1 24.157118
2 C 1 24.238230
3 A 2 20.740120
4 B 2 20.779703
5 C 2 20.787008
6 A 3 17.183802
7 B 3 17.171795
8 C 3 17.147598
9 A 4 13.774300
10 B 4 13.768831
11 C 4 13.779314
12 A 5 10.294983
13 B 5 10.362967
14 C 5 10.292967
15 A 6 6.967062
16 B 6 6.870273
17 C 6 6.735704

5. Use wellmap.load() to associate the labels specified in the TOML file (e.g. the dilutions and replicates) with
the experimental data (e.g. the 𝐶𝑞 values). This process has three steps:

• Load a data frame containing the data (see above).

• Load another data frame containing the labels.

• Merge the two data frames.

For the sake of clarity and completeness, we will first show how to perform these steps manually. Practically,
though, it’s easier to let wellmap perform them automatically.

Manual merge

Use the wellmap.load() function to create a pandas.DataFrame containing the information from the TOML
file. This data frame will have columns for each label we specified: replicate, dilution. It will also have six
columns identifying the wells in different ways: well, well0, row, col, row_i, col_j. These columns are redundant,
but this redundancy makes it easier to merge the labels with the data. For example, if the wells are named
“A1,A2,. . . ” in the data, the well column can be used for the merge. If the wells are named “A01,A02,. . . ”, the
well0 column can be used instead. If the wells are named in some non-standard way, the row_i and col_j columns
can be used to calculate an appropriate merge column.

>>> import wellmap
>>> labels = wellmap.load('std_curve.toml')
>>> labels

well well0 row col row_i col_j replicate dilution
0 A1 A01 A 1 0 0 1 100000.0
1 A2 A02 A 2 0 1 1 10000.0
2 A3 A03 A 3 0 2 1 1000.0
3 A4 A04 A 4 0 3 1 100.0
4 A5 A05 A 5 0 4 1 10.0
5 A6 A06 A 6 0 5 1 1.0
6 B1 B01 B 1 1 0 2 100000.0
7 B2 B02 B 2 1 1 2 10000.0

(continues on next page)

1.1. Basic usage with python 5

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

wellmap, Release 3.4.0

(continued from previous page)

8 B3 B03 B 3 1 2 2 1000.0
9 B4 B04 B 4 1 3 2 100.0
10 B5 B05 B 5 1 4 2 10.0
11 B6 B06 B 6 1 5 2 1.0
12 C1 C01 C 1 2 0 3 100000.0
13 C2 C02 C 2 2 1 3 10000.0
14 C3 C03 C 3 2 2 3 1000.0
15 C4 C04 C 4 2 3 3 100.0
16 C5 C05 C 5 2 4 3 10.0
17 C6 C06 C 6 2 5 3 1.0

Use the pandas.merge() function to associate the labels with the data. In this case, both data frames have
columns named row and col, so pandas will automatically use those for the merge. It is also easy to merge using
columns with different names; see the documentation on pandas.merge() for more information.

>>> import pandas as pd
>>> df = pd.merge(labels, data)
>>> df

well well0 row col row_i col_j replicate dilution Cq
0 A1 A01 A 1 0 0 1 100000.0 24.180859
1 A2 A02 A 2 0 1 1 10000.0 20.740120
2 A3 A03 A 3 0 2 1 1000.0 17.183802
3 A4 A04 A 4 0 3 1 100.0 13.774300
4 A5 A05 A 5 0 4 1 10.0 10.294983
5 A6 A06 A 6 0 5 1 1.0 6.967062
6 B1 B01 B 1 1 0 2 100000.0 24.157118
7 B2 B02 B 2 1 1 2 10000.0 20.779703
8 B3 B03 B 3 1 2 2 1000.0 17.171795
9 B4 B04 B 4 1 3 2 100.0 13.768831
10 B5 B05 B 5 1 4 2 10.0 10.362967
11 B6 B06 B 6 1 5 2 1.0 6.870273
12 C1 C01 C 1 2 0 3 100000.0 24.238230
13 C2 C02 C 2 2 1 3 10000.0 20.787008
14 C3 C03 C 3 2 2 3 1000.0 17.147598
15 C4 C04 C 4 2 3 3 100.0 13.779314
16 C5 C05 C 5 2 4 3 10.0 10.292967
17 C6 C06 C 6 2 5 3 1.0 6.735704

Automatic merge

While it’s good to understand how the labels are merged with the data, it’s better to let wellmap perform the
merge for you. Not only is this more succinct, it also handles some tricky corner cases behind the scenes, e.g.
layouts with multiple data files.

To load and merge the data using wellmap.load(), you need to provide the following arguments:

• data_loader: A function that accepts a path to a file and returns a pandas.DataFrame containing the data
from that file. Note that the function we wrote in the previous section fulfills these requirements. If the
raw data are tidy to begin with, it is often possible to directly use pandas.read_csv() or similar for this
argument.

• merge_cols: An indication of which columns to merge. In the snippet below, True means to use any
columns that are shared between the two data frames (e.g. that have the same name). You can also use a

6 Chapter 1. Citation

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv

wellmap, Release 3.4.0

dictionary to be more explicit about which columns to merge on.

Here we also provide the path_guess argument, which specifies that the experimental data can be found in a
CSV file with the same base name as the layout. It also would’ve been possible to specify the path to the CSV
directly from the TOML file (see meta.path), in which case this argument would’ve been unnecessary.

>>> df = wellmap.load(
... 'std_curve.toml',
... data_loader=load_cq,
... merge_cols=True,
... path_guess='{0.stem}.csv',
...)
>>> df

well well0 row ... replicate dilution Cq
0 A1 A01 A ... 1 100000.0 24.180859
1 A2 A02 A ... 1 10000.0 20.740120
2 A3 A03 A ... 1 1000.0 17.183802
3 A4 A04 A ... 1 100.0 13.774300
4 A5 A05 A ... 1 10.0 10.294983
5 A6 A06 A ... 1 1.0 6.967062
6 B1 B01 B ... 2 100000.0 24.157118
7 B2 B02 B ... 2 10000.0 20.779703
8 B3 B03 B ... 2 1000.0 17.171795
9 B4 B04 B ... 2 100.0 13.768831
10 B5 B05 B ... 2 10.0 10.362967
11 B6 B06 B ... 2 1.0 6.870273
12 C1 C01 C ... 3 100000.0 24.238230
13 C2 C02 C ... 3 10000.0 20.787008
14 C3 C03 C ... 3 1000.0 17.147598
15 C4 C04 C ... 3 100.0 13.779314
16 C5 C05 C ... 3 10.0 10.292967
17 C6 C06 C ... 3 1.0 6.735704

[18 rows x 10 columns]

6. Analyze the data given the connection between the labels and the data. This step doesn’t involve wellmap, but
is included here for completeness. The example below makes a linear regression of the data in log-space:

Listing 2: std_curve.py

#!/usr/bin/env python3

import wellmap
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import linregress

def load_cq(path):
return (pd

.read_csv(path)

.rename(columns={'Cq': 'row'})

.melt(
id_vars=['row'],

(continues on next page)

1.1. Basic usage with python 7

wellmap, Release 3.4.0

(continued from previous page)

var_name='col',
value_name='Cq',

)
)

df = wellmap.load(
'std_curve.toml',
data_loader=load_cq,
merge_cols=True,
path_guess='{0.stem}.csv',

)

x = df['dilution']
y = df['Cq']
m, b, r, p, err = linregress(np.log10(x), y)

x_fit = np.logspace(0, 5)
y_fit = np.polyval((m, b), np.log10(x_fit))

r2 = r**2
eff = 100 * (10**(1/m) - 1)
label = 'R2={:.5f}\neff={:.2f}%'.format(r2, eff)

plt.plot(x_fit, y_fit, '--', label=label)
plt.plot(x, y, '+')
plt.legend(loc='best')
plt.xscale('log')
plt.xlabel('dilution')
plt.ylabel('Cq')
plt.show()

Fig. 1: R2 is a measure of how well the line fits the data. In this case, the fit is very good. Note that there are three data
points for each dilution, but they are hard to tell apart because they are almost perfectly superimposed. Efficiency is a
measure of how well the qPCR reaction worked, or more specifically, how close the amount of DNA came to doubling
(as would be expected) on each cycle. 100% indicates perfect doubling; 94% is a little on the low side.

1.2 Basic usage with R

The following steps show how to get started with wellmapr in R:

1. Install wellmapr from GitHub. It’s good to be aware that wellmapr is written in python and made available
to R using the reticulate package. This detail shouldn’t affect you in normal usage, but may be relevant if the
installation doesn’t go smoothly:

> devtools::install_github("kalekundert/wellmap", subdir="wellmapr")

2. Write a TOML file describing the layout of an experiment. For example, the following layout might be used for
a standard curve:

8 Chapter 1. Citation

https://rstudio.github.io/reticulate/

wellmap, Release 3.4.0

Listing 3: std_curve.toml

The [row] and [col] sections specify which conditions are being tested in
which wells. The fields within these sections (e.g. `dilution`, `replicate`)
can be anything. If your plates aren't organized by row and column, there
are other ways to define the plate layout; see the "File format" section for
more details.

[col]
1.dilution = 1e5
2.dilution = 1e4
3.dilution = 1e3
4.dilution = 1e2
5.dilution = 1e1
6.dilution = 1e0

[row]
A.replicate = 1
B.replicate = 2
C.replicate = 3

3. Confirm that the layout is correct by using wellmapr::show() to produce a visualization of the layout. This is
an important step, because it’s much easier to spot mistakes in the visualization than in the layout file itself.

> wellmapr::show("std_curve.toml")

This map shows that:

• Each row is a different replicate.

• Each column is a different dilution.

It’s also possible to create maps like this from the command line, which may be more convenient in some cases.
The best way to do this is to use reticulate::py_config() to find the path to the python installation used by reticulate,
then to invoke the wellmap command associated with that installation. The alias is optional, but could be saved
in your shell configuration to make the command easier to remember:

$ Rscript -e 'reticulate::py_config()'
python: /home/kale/.local/share/r-miniconda/envs/r-reticulate/bin/python
libpython: /home/kale/.local/share/r-miniconda/envs/r-reticulate/lib/
→˓libpython3.6m.so
pythonhome: /home/kale/.local/share/r-miniconda/envs/r-reticulate:/home/kale/.
→˓local/share/r-miniconda/envs/r-reticulate
version: 3.6.10 | packaged by conda-forge | (default, Apr 24 2020, 16:44:11)␣
→˓ [GCC 7.3.0]
numpy: /home/kale/.local/share/r-miniconda/envs/r-reticulate/lib/python3.6/
→˓site-packages/numpy
numpy_version: 1.18.5
$ alias wellmap=/home/kale/.local/share/r-miniconda/envs/r-reticulate/bin/wellmap
$ wellmap std_curve.toml

4. Load the data from the experiment in question into a tidy data frame. Tidy data are easier to work with in general,
and are required by wellmapr in particular. If you aren’t familiar with the concept of tidy data, this article is a
good introduction. The basic idea is to ensure that:

1.2. Basic usage with R 9

https://rstudio.github.io/reticulate/articles/versions.html
https://rstudio.github.io/reticulate/
https://www.jstatsoft.org/article/view/v059i10
https://r4ds.had.co.nz/tidy-data.html

wellmap, Release 3.4.0

• Each variable is represented by a single column.

• Each observation is represented by a single row.

If possible, it’s best to export data from the instrument that collected it directly to a tidy format. When this
isn’t possible, though, you’ll need to tidy the data yourself. For example, consider the following data (which
corresponds to the layout from above). This is qPCR data, where a higher 𝐶𝑞 value indicates that less material is
present. The data are shaped like the plate itself, e.g. a row in the data for every row on the plate, and a column
in the data for every column on the plate. It’s not uncommon for microplate instruments to export data in this
format.

Table 2: std_curve.csv
Cq 1 2 3 4 5 6
A 24.18085861206054720.7401199340820317.18380165100097713.77429962158203110.294982910156256.967061996459961
B 24.1571178436279320.7797031402587917.17179489135742213.76883125305175810.3629665374755866.870273113250732
C 24.23822975158691420.7870082855224617.14759826660156313.77931404113769510.2929668426513676.735703945159912

Below is the code to load this data into a tidy tibble with the following columns:

• row: A letter identifying a row on the microplate, e.g. A-H

• col: A number identifying a column on the microplate, e.g. 1-12

• Cq: The 𝐶𝑞 value measured for the identified well.

> library(tidyverse)
>
> load_cq <- function(path) {
+ read_csv(path) %>%
+ rename(row = Cq) %>%
+ pivot_longer(
+ !row,
+ names_to = "col",
+ values_to = "Cq",
+)
+ }
> data <- load_cq("std_curve.csv")
> data
A tibble: 18 x 3

row col Cq
<chr> <chr> <dbl>

1 A 1 24.2
2 A 2 20.7
3 A 3 17.2
4 A 4 13.8
5 A 5 10.3
6 A 6 6.97
7 B 1 24.2
8 B 2 20.8
9 B 3 17.2
10 B 4 13.8
11 B 5 10.4
12 B 6 6.87
13 C 1 24.2
14 C 2 20.8

(continues on next page)

10 Chapter 1. Citation

https://tibble.tidyverse.org/

wellmap, Release 3.4.0

(continued from previous page)

15 C 3 17.1
16 C 4 13.8
17 C 5 10.3
18 C 6 6.74

5. Use wellmapr::load() to associate the labels specified in the TOML file (e.g. the dilutions and replicates)
with the experimental data (e.g. the 𝐶𝑞 values). This process has three steps:

• Load a data frame containing the data (see above).

• Load another data frame containing the labels.

• Merge the two data frames.

For the sake of clarity and completeness, we will first show how to perform these steps manually. Practically,
though, it’s easier to let wellmapr perform them automatically.

Manual merge

Use the wellmapr::load() function to create a tibble containing the information from the TOML file. This
data frame will have columns for each label we specified: replicate, dilution. It will also have six columns
identifying the wells in different ways: well, well0, row, col, row_i, col_j. These columns are redundant, but this
redundancy makes it easier to merge the labels with the data. For example, if the wells are named “A1,A2,. . . ”
in the data, the well column can be used for the merge. If the wells are named “A01,A02,. . . ”, the well0 column
can be used instead. If the wells are named in some non-standard way, the row_i and col_j columns can be used
to calculate an appropriate merge column.

> layout <- wellmapr::load("std_curve.toml")
> layout

well well0 row col row_i col_j replicate dilution
1 A1 A01 A 1 0 0 1 1e+05
2 A2 A02 A 2 0 1 1 1e+04
3 A3 A03 A 3 0 2 1 1e+03
4 A4 A04 A 4 0 3 1 1e+02
5 A5 A05 A 5 0 4 1 1e+01
6 A6 A06 A 6 0 5 1 1e+00
7 B1 B01 B 1 1 0 2 1e+05
8 B2 B02 B 2 1 1 2 1e+04
9 B3 B03 B 3 1 2 2 1e+03
10 B4 B04 B 4 1 3 2 1e+02
11 B5 B05 B 5 1 4 2 1e+01
12 B6 B06 B 6 1 5 2 1e+00
13 C1 C01 C 1 2 0 3 1e+05
14 C2 C02 C 2 2 1 3 1e+04
15 C3 C03 C 3 2 2 3 1e+03
16 C4 C04 C 4 2 3 3 1e+02
17 C5 C05 C 5 2 4 3 1e+01
18 C6 C06 C 6 2 5 3 1e+00

Use the dplyr::inner_join() function to associate the labels with the data. In this case, both data frames have
columns named row and col, so those columns are automatically used for the merge (as indicated). It is also easy
to merge using columns with different names; see the documentation on dplyr::inner_join() for more information.

1.2. Basic usage with R 11

https://tibble.tidyverse.org/
https://dplyr.tidyverse.org/reference/join.html
https://dplyr.tidyverse.org/reference/join.html

wellmap, Release 3.4.0

> inner_join(layout, data)
Joining, by = c("row", "col")

well well0 row col row_i col_j replicate dilution Cq
1 A1 A01 A 1 0 0 1 1e+05 24.180859
2 A2 A02 A 2 0 1 1 1e+04 20.740120
3 A3 A03 A 3 0 2 1 1e+03 17.183802
4 A4 A04 A 4 0 3 1 1e+02 13.774300
5 A5 A05 A 5 0 4 1 1e+01 10.294983
6 A6 A06 A 6 0 5 1 1e+00 6.967062
7 B1 B01 B 1 1 0 2 1e+05 24.157118
8 B2 B02 B 2 1 1 2 1e+04 20.779703
9 B3 B03 B 3 1 2 2 1e+03 17.171795
10 B4 B04 B 4 1 3 2 1e+02 13.768831
11 B5 B05 B 5 1 4 2 1e+01 10.362967
12 B6 B06 B 6 1 5 2 1e+00 6.870273
13 C1 C01 C 1 2 0 3 1e+05 24.238230
14 C2 C02 C 2 2 1 3 1e+04 20.787008
15 C3 C03 C 3 2 2 3 1e+03 17.147598
16 C4 C04 C 4 2 3 3 1e+02 13.779314
17 C5 C05 C 5 2 4 3 1e+01 10.292967
18 C6 C06 C 6 2 5 3 1e+00 6.735704

Automatic merge

While it’s good to understand how the labels are merged with the data, it’s better to let wellmapr perform the
merge for you. Not only is this more succinct, it also handles some tricky corner cases behind the scenes, e.g.
layouts with multiple data files.

To load and merge the data using wellmapr::load(), you need to provide the following arguments:

• data_loader: A function that accepts a path to a file and returns a tibble containing the data from that file.
Note that the function we wrote in the previous section fulfills these requirements. If the raw data are tidy
to begin with, it is often possible to directly use readr::read_csv() or similar for this argument.

• merge_cols: An indication of which columns to merge. In the snippet below, TRUE means to use any
columns that are shared between the two data frames (e.g. that have the same name). You can also use a
dictionary to be more explicit about which columns to merge on.

Here we also provide the path_guess argument, which specifies that the experimental data can be found in a
CSV file with the same base name as the layout. Note that this argument uses the syntax for string formatting in
python, as described in the API documentation. It also would’ve been possible to specify the path to the CSV
directly from the TOML file (see meta.path), in which case this argument would’ve been unnecessary.

> wellmapr::load(
+ "std_curve.toml",
+ data_loader = load_cq,
+ merge_cols = TRUE,
+ path_guess = "{0.stem}.csv",
+)

well well0 row col row_i col_j path replicate dilution ␣
→˓ Cq
0 A1 A01 A 1 0 0 <environment: 0x56501964bc60> 1 1e+05␣
→˓24.180859
1 A2 A02 A 2 0 1 <environment: 0x565019653a68> 1 1e+04␣
→˓20.740120 (continues on next page)

12 Chapter 1. Citation

https://tibble.tidyverse.org/
https://readr.tidyverse.org/reference/read_delim.html

wellmap, Release 3.4.0

(continued from previous page)

2 A3 A03 A 3 0 2 <environment: 0x56501965d790> 1 1e+03␣
→˓17.183802
3 A4 A04 A 4 0 3 <environment: 0x565019665598> 1 1e+02␣
→˓13.774300
4 A5 A05 A 5 0 4 <environment: 0x56501966f2c0> 1 1e+01␣
→˓10.294983
5 A6 A06 A 6 0 5 <environment: 0x565019673298> 1 1e+00 ␣
→˓6.967062
6 B1 B01 B 1 1 0 <environment: 0x56501967b0a0> 2 1e+05␣
→˓24.157118
7 B2 B02 B 2 1 1 <environment: 0x565019684dc8> 2 1e+04␣
→˓20.779703
8 B3 B03 B 3 1 2 <environment: 0x56501968cbd0> 2 1e+03␣
→˓17.171795
9 B4 B04 B 4 1 3 <environment: 0x5650196968f8> 2 1e+02␣
→˓13.768831
10 B5 B05 B 5 1 4 <environment: 0x56501969e700> 2 1e+01␣
→˓10.362967
11 B6 B06 B 6 1 5 <environment: 0x5650196a8428> 2 1e+00 ␣
→˓6.870273
12 C1 C01 C 1 2 0 <environment: 0x5650196b0230> 3 1e+05␣
→˓24.238230
13 C2 C02 C 2 2 1 <environment: 0x5650196b9f58> 3 1e+04␣
→˓20.787008
14 C3 C03 C 3 2 2 <environment: 0x5650196c3c80> 3 1e+03␣
→˓17.147598
15 C4 C04 C 4 2 3 <environment: 0x5650196cba88> 3 1e+02␣
→˓13.779314
16 C5 C05 C 5 2 4 <environment: 0x5650196d57b0> 3 1e+01␣
→˓10.292967
17 C6 C06 C 6 2 5 <environment: 0x5650196dd5b8> 3 1e+00 ␣
→˓6.735704

6. Analyze the data given the connection between the labels and the data. This step doesn’t involve wellmap, but
is included here for completeness. The example below makes a linear regression of the data in log-space:

Listing 4: std_curve.R

library(tidyverse)

load_cq <- function(path) {
read_csv(path) %>%
rename(row = Cq) %>%
pivot_longer(

!row,
names_to = "col",
values_to = "Cq",

)
}

df <- wellmapr::load(
"std_curve.toml",

(continues on next page)

1.2. Basic usage with R 13

wellmap, Release 3.4.0

(continued from previous page)

data_loader = load_cq,
merge_cols = TRUE,
path_guess = "{0.stem}.csv",

)

ggplot(df, aes(x = dilution, y = Cq)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10()

1.3 Example layouts

Below are examples of plate layouts used in actual experiments.

1.3.1 -galactosidase assay

The following layout was used to measure the expression of -galactosidase in different conditions. Particularly notewor-
thy are the fit_start_min and fit_stop_min parameters. In this assay, the concentration of the enzyme is deduced from
a linear fit of absorbance over time (measured using a plate reader). However, the reaction becomes non-linear as the
substrate is exhausted, which happens at different times for different conditions (i.e. depending on how much enzyme
is expressed). The fit_start_min and fit_stop_min parameters specify which data points are in the linear regime. The
default is to use the data points between 5–30 min, but several wells use different cutoffs to better fit the data. This is
an good example of how the fine-grained control provided by wellmap can be used to facilitate analysis.

Listing 5: beta_gal_assay.toml

[expt]
spacer = 'lz'
ligand = 'theophylline'
fit_start_min = 5
fit_stop_min = 30

[row.A]
growth_time_h = 6
[row.B]
growth_time_h = 8
[row.C]
growth_time_h = 10
[row.D]
growth_time_h = 16

[col.3]
sgrna = 'on'
ligand_mM = 0
[col.4]
sgrna = 'on'
ligand_mM = 30
[col.5]

(continues on next page)

14 Chapter 1. Citation

wellmap, Release 3.4.0

(continued from previous page)

sgrna = 'off'
ligand_mM = 0
[col.6]
sgrna = 'off'
ligand_mM = 30

[well.B5]
fit_start_min = 0
fit_stop_min = 15
[well.C5]
fit_start_min = 5
fit_stop_min = 15
[well.D5]
fit_start_min = 0
fit_stop_min = 15
[well.D6]
fit_start_min = 0
fit_stop_min = 15

1.3.2 Bradford assay

The following layout was used to measure the concentration of purified protein mutants using a Bradford assay. There
are a few things worth noting for this example:

• The same standard curve can be used for many experiments, so it makes sense to keep those concentrations in a
separate file, to be included as necessary. Specifying these concentrations in a single place reduces redundancy
and decreases the chance of making mistakes.

• The wells in the standard curve layout are specified using [block] instead of [row] and [col]. This makes it safe
to include the standard curve in other layouts, because the blocks won’t grow as more wells are added to the
layout.

• The [bradford] block provides information on how to parse and interpret the data, e.g. what format the data
is in and what wavelengths were measured. This information can be accessed in analysis scripts via the extras
argument to load():

>>> import wellmap
>>> df, ex = wellmap.load('bradford_assay.toml', extras=True)
>>> ex
{'bradford': {'format': 'biotek', 'absorbance': '595/450'}}

Listing 6: bradford_standards.toml

[block.9x3.A1]
standard = true

Pierce BCA Protein Assay Kit
Catalog: Thermo #23225
Manual: tinyurl.com/y8uj7dzy
[block.1x3]
A1.ug_mL = 2000

(continues on next page)

1.3. Example layouts 15

wellmap, Release 3.4.0

(continued from previous page)

A2.ug_mL = 1500
A3.ug_mL = 1000
A4.ug_mL = 750
A5.ug_mL = 500
A6.ug_mL = 250
A7.ug_mL = 125
A8.ug_mL = 25
A9.ug_mL = 0

Listing 7: bradford_assay.toml

[meta]
include = 'bradford_standards.toml'

[bradford]
format = 'biotek'
absorbance = '595/450'

[block.3x2]
D1.sample = 'Y37A'
D4.sample = 'D42A'
D7.sample = 'T44A'
D10.sample = 'Y45A'
F1.sample = 'Y37E'
F4.sample = 'T44P'
F7.sample = 'Y45R'

[row]
'D,F'.dilution = 1
'E,G'.dilution = 5

1.3.3 qPCR timecourse

The following layout was used in a qPCR experiment to measure the change in GFP expression (compared to the 16S
reference gene) over time in different ligand conditions. Note that the TOML file has very little redundancy, even
though the layout isn’t particularly regular.

Listing 8: qpcr_timecourse.toml

[expt]
sgrna = 'ligRNA-'

[block.4x3.A1]
time = 00:00:00
[block.8x3.A9]
time = 00:02:00
[block.8x3.D1]
time = 00:04:20
[block.8x3.D9]
time = 00:07:00

(continues on next page)

16 Chapter 1. Citation

wellmap, Release 3.4.0

(continued from previous page)

[block.8x3.G1]
time = 00:10:00
[block.8x3.G9]
time = 00:13:20
[block.8x3.J1]
time = 00:17:00
[block.8x3.J9]
time = 00:21:00
[block.8x3.M1]
time = 00:25:20
[block.8x3.M9]
time = 00:30:00

[col.'1,3,...,17']
primers = 'gfp'
[col.'2,4,...,18']
primers = '16s'

[block.2x3.A1]
ligand = 'apo'
[block.2x3.A3]
ligand = 'holo'
[block.2x12.D1]
ligand = 'apo→apo'
[block.2x15.A9]
ligand = 'apo→apo'
[block.2x12.D3]
ligand = 'apo→holo'
[block.2x15.A11]
ligand = 'apo→holo'
[block.2x12.D5]
ligand = 'holo→apo'
[block.2x15.A13]
ligand = 'holo→apo'
[block.2x12.D7]
ligand = 'holo→holo'
[block.2x15.A15]
ligand = 'holo→holo'

Controls:
[block.2x3.A5]
control = 'no GFP'
[block.2x3.A7]
control = 'no RT'
[block.2x3.A17]
control = 'no cDNA'

1.3. Example layouts 17

wellmap, Release 3.4.0

1.4 Related software

There are a handful of other packages that may be helpful when working with microplate experiments. Most of these
packages parse plate layouts from spreadsheet files. In contrast, wellmap parses layout information from text files using
a file format designed specifically for encoding plate layouts. As a result, these files are:

• Less redundant.

• Easier to read.

• Easier to write.

Wellmap also includes a tool for visualizing plate layouts, which makes it easy to see if there’s a mistake in your layouts.
None of the alternatives provide a comparable tool.

1.4.1 plater

An R library that parses plate layouts from a spreadsheet files into tidy data frames. The documentation is excellent
and the library is easy to use. Multiple plates are supported, and in some cases the data and the layout can be put in the
same file. The biggest drawback (other than using spreadsheets to store layout information and not providing a way to
visualize layouts) is that it cannot be used with python.

1.4.2 plate_map_to_list

A command-line tool that converts spreadsheet files containing plate layouts into tidy CSV or TSV files. By virtue
of being a command-line program, this can be used no matter what language your analysis scripts are written in.
However, the command-line approach depends on generated intermediate files, which may clutter up your directories.
More importantly, it’s possible for the generated files to get out of sync with the original layouts, which could cause
confusion. You also have to merge the layout with the experimental data yourself, although this is generally a simple
operation.

1.4.3 Bioplate

A python library that can parse plate layouts from spreadsheet files. However, no easy way is provided to merge this
layout information with experimental data.

1.4.4 Plateo

A python library focused on simulating robotic pipetting protocols. It can parse plate layouts from spreadsheet files,
but does not provide an easy way to merge this information with experimental data.

1.4.5 cellHTS

An R library focused on analyzing data from high-throughput RNAi experiments. The pipeline involves a bespoke file
format for describing plate layouts, but it is not suitable for general use.

18 Chapter 1. Citation

wellmap, Release 3.4.0

1.4.6 platetools

An R library that seems related to microplate layouts. I can’t figure out exactly what it does, though; the documentation
is inscrutable.

1.5 Getting help

If you find a bug or need help getting wellmap to work, please open a new issue on Github. Pull requests are also
welcome!

1.6 File format

The basic organization of a wellmap file is as follows: first you specify a group of wells, then you specify the ex-
perimental parameters associated with those wells. For example, the following snippet specifies that well A1 has a
concentration of 100:

[well.A1]
conc = 100

The file format is based on TOML, so refer to the TOML documentation for a complete description of the basic syntax.
Typically, square brackets (i.e. tables) are used to identify groups of wells and key/value pairs are used to set the
experimental parameters for those wells. Note however that all of the following are equivalent:

[well.A1]
conc = 100

[well]
A1.conc = 100

well.A1.conc = 100

Most of this document focuses on describing the various ways to succinctly specify different groups of wells, e.g.
[row.A], [col.1], [block.WxH.A1], etc. There is no need to specify the size of the plate. The data frame returned by
load() will contain a row for each well implied by the layout file.

Experimental parameters can be specified by setting any key associated with a well group (e.g. conc in the above
examples) to a scalar value (e.g. string, integer, float, boolean, date, time, etc.). There are no restrictions on what these
parameters can be named, although complex names (e.g. with spaces or punctuation) may need to be quoted. The data
frame returned by load() will contain a column named for each parameter associated with any well in the layout. Not
every well needs to have a value for every parameter; missing values will be represented in the data frame by nan.

1.6.1 [meta]

Miscellaneous fields that affect how wellmap parses the file. This is the only section that does not describe the orga-
nization of any wells.

Note: All paths specified in this section can either be absolute (if they begin with a ‘/’) or relative (if they don’t).
Relative paths are considered relative to the directory containing the TOML file itself, regardless of what the current
working directory is.

1.5. Getting help 19

https://github.com/kalekundert/wellmap/issues
https://github.com/kalekundert/wellmap/pulls
https://github.com/toml-lang/toml#keys
https://github.com/toml-lang/toml#string
https://github.com/toml-lang/toml#integer
https://github.com/toml-lang/toml#float
https://github.com/toml-lang/toml#boolean
https://github.com/toml-lang/toml#local-date
https://github.com/toml-lang/toml#local-time

wellmap, Release 3.4.0

meta.path

The path to the file containing the actual data for this layout. The path_guess argument of the load() function can be
used to provide a default path when this option is not specified. If the layout includes multiple plates (i.e. if it has one
or more [plate.NAME] sections), use meta.paths and not meta.path.

meta.paths

The paths to the files containing the actual data for each plate described in the layout. You can specify these paths either
as a format string or a mapping:

• Format string: The “{}” will be replaced with the name of the plate (e.g. “NAME” for [plate.NAME]):

[meta]
paths = 'path/to/file_{}.dat'

• Mapping: Plate names (e.g. “NAME” for [plate.NAME]) are mapped to paths. This is more verbose, but more
flexible than the format string approach:

[meta.paths]
a = 'path/to/file_a.dat'
b = 'path/to/file_b.dat'

If the layout doesn’t explicitly define any plates (i.e. if it has no [plate.NAME] sections), use meta.path and not
meta.paths.

meta.include

The paths to one or more files that should effectively be copied-and-pasted into this layout. This is useful for sharing
common features between similar layouts, e.g. reusing a standard curve layout between multiple experiments, or even
reusing entire layouts for replicates with different data paths. This setting can either be a string, a dictionary, or a list:

• String: The path to a single layout file to include.

• Dictionary: The path to a single layout file in include, with additional metadata. The dictionary can have the
following keys:

– path (string, required): The path to include.

– shift (string, optional): Reposition all the wells in the included layout. This setting has the following syntax:
<well> to <well>. For example, A1 to B2 would shift all wells down and to the right by one. Some
caveats: the included file cannot use the [irow.A] or [icol.1] well groups (this restriction may be possible to
remove, let me know if it causes you problems), wells cannot be shifted to negative row or column indices,
and the shift will not apply to any files that are concatenated to the included file via meta.concat.

• List: The paths to multiple layout files to include. Each item in the list can either be a string or a dictionary;
both will be interpreted as described above. If multiple files define the same well groups, the later files will take
precedence over the earlier ones.

20 Chapter 1. Citation

wellmap, Release 3.4.0

Examples:

The first layout describes a generic 10-fold serial dilution. The second layout expands on the first by specifying which
sample is in each row. Note that the first layout could not be used on its own because it doesn’t specify any rows:

Listing 9: serial_dilution.toml

[col]
1.conc = 1e4
2.conc = 1e3
3.conc = 1e2
4.conc = 1e1
5.conc = 1e0
6.conc = 0

Listing 10: meta_include.toml

[meta]
include = 'serial_dilution.toml'

[row.'A,B']
sample = ''

[row.'C,D']
sample = ''

The following layouts demonstrate the shift option. Note that both layouts specify the same 2x2 block, but the block
from the included file is moved down and to the right in the final layout:

Listing 11: shift_parent.toml

[block.2x2.A1]
x = 2

1.6. File format 21

wellmap, Release 3.4.0

Listing 12: meta_include_shift.toml

[meta.include]
path = 'shift_parent.toml'
shift = 'A1 to C3'

[block.2x2.A1]
x = 1

meta.concat

The paths of one or more TOML files that should be loaded independently of this file and concatenated to the resulting
data frame. This is useful for combining multiple independent experiments (e.g. replicates performed on different days)
into a single layout for analysis. Unlike meta.include, the referenced paths have no effect on how this file is parsed, and
are not themselves affected by anything in this file.

The paths can be specified either as a string, a list, or a dictionary. Use a string to load a single path and a list to load
multiple paths. Use a dictionary to load multiple paths and to assign a unique plate name (its key in the dictionary) to
each one. Assigning plate names in this manner is useful when concatenating multiple single-plate layouts (as in the
example below), because it keeps the wells from different plates easy to distinguish. Note that the plate names specified
via dictionary keys will override any plate names specified in the layouts themselves.

Example:

The first two layouts describe the same experiment with different samples. The third layout combines the first two for
easier analysis.

Listing 13: expt_1.toml

[block.4x4.A1]
sample = ''

Listing 14: expt_2.toml

[block.4x4.A1]
sample = ''

22 Chapter 1. Citation

wellmap, Release 3.4.0

Listing 15: concat.toml

[meta.concat]
X = 'expt_1.toml'
Y = 'expt_2.toml'

meta.alert

A message that should be printed to the terminal every time this file is loaded. For example, if something went wrong
during the experiment that would affect how the data is interpreted, put that here to be reminded of that every time you
look at the data.

1.6.2 [expt]

Specify parameters that apply to every well in the layout, e.g. parameters that aren’t being varied. These parameters
are important to record for two reasons that may not be immediately obvious. First, they contribute to the complete
annotation of the experiment, which will make the experiment easier for others (including yourself, after a few months)
to understand. Second, they make it easier to write reusable analysis scripts, because the scripts can rely on every layout
specifying every relevant parameter, not only those parameters that are being varied.

Avoid using this section for metadata such as your name, the date, the name of the experiment, etc. While this kind of
metadata does apply to every well, it doesn’t affect how the data will be analyzed. Including it here needlessly bloats
the data frame returned by load(). It’s better to put this information in top-level key/value pairs (e.g. outside of any
well group). Analysis scripts can still access this information using the extras argument to the load() function, but it
will not clutter the data frame used for analysis.

Note that the wellmap command by default only displays experimental parameters that have at least two different
values across the whole layout, which normally excludes [expt] parameters. To see such a parameter anyways, provide
its name as one of the <attr> arguments.

Example:

This layout demonstrates the difference between [expt] parameters and metadata. All of the wells on this plate have the
same sample, but the sample is relevant to the analysis and might vary in other layouts analyzed by the same script. In
contrast, the name and date are just (useful) metadata.

Listing 16: expt.toml

name = "Kale Kundert"
date = 2020-05-26

[expt]
sample = ''

Without this, the plate wouldn't have any wells.
[block.4x4.A1]

1.6. File format 23

wellmap, Release 3.4.0

1.6.3 [plate.NAME]

Specify parameters that differ between plates. Each plate must have a unique name, which will be included in the data
frame returned by load(). The names can be any valid TOML key. In other words, almost any name is allowed,
but complex names (e.g. with spaces or punctuation) may need to be quoted. Note that these names are also used in
meta.paths to associate data with each plate.

Any parameters specified outside of a plate will apply to all plates. Any key/value pairs specified at the top-level of a
plate will apply to the whole plate. Any well groups specified within a plate (e.g. [plate.NAME.row.A]) will only
apply to that plate, and will take precedence over values specified in the same well groups (e.g. [row.A]) outside the
plate. Refer to the Precedence rules for more information.

Example:

The following layout shows how to define parameters that apply to:

• All plates (conc).

• One specific plate (sample=).

• Part of one specific plate (sample=,).

Listing 17: plate.toml

[plate.X]
sample = ''

[plate.Y.block.2x4.A1]
sample = ''

[plate.Y.block.2x4.A3]
sample = ''

[col.'1,3']
conc = 0

[col.'2,4']
conc = 100

Without this, plate X wouldn't have any rows.
[row.'A,B,C,D']

1.6.4 [row.A]

Specify parameters for all the wells in the given row (e.g. “A”). Rows must be specified as letters, either upper- or
lower-case. If necessary, rows beyond “Z” can be specified with multiple letters (e.g. “AA”, “AB”, etc.). You can use
the pattern syntax to specify multiple rows at once, e.g. [row.'A,C,E'] or [row.'A,C,...,G'].

24 Chapter 1. Citation

wellmap, Release 3.4.0

Examples:

The following layout specifies a different sample for each row:

Listing 18: row.toml

[row]
A.sample = ''
B.sample = ''
C.sample = ''
D.sample = ''

Indicate how many columns there are.
[col.'1,2,3,4']

The following layout uses the pattern syntax to specify the same sample in multiple rows:

Listing 19: row_pattern.toml

[row.'A,C']
sample = ''

[row.'B,D']
sample = ''

Indicate how many columns there are.
[col.'1,2,3,4']

1.6.5 [col.1]

Specify parameters for all the wells in the given column (e.g. “1”). Columns must be specified using integer numbers,
starting from 1. You can use the pattern syntax to specify multiple columns at once, e.g. [col.'1,3,5'] or [col.
'1,3,...,7'].

Examples:

The following layout specifies a different sample for each column:

Listing 20: col.toml

[col]
1.sample = ''
2.sample = ''
3.sample = ''
4.sample = ''

Indicate how many rows there are.
[row.'A,B,C,D']

1.6. File format 25

wellmap, Release 3.4.0

The following layout uses the pattern syntax to specify the same sample in multiple columns:

Listing 21: col_pattern.toml

[col.'1,3']
sample = ''

[col.'2,4']
sample = ''

Indicate how many rows there are.
[row.'A,B,C,D']

1.6.6 [irow.A]

Similar to [row.A], but “interleaved” with the row above or below it. This layout is sometimes used for experiments
that may be sensitive to neighbor effects or slight gradients across the plate.

Example:

The following layout interleaves samples between rows. Note that on the even columns, [irow.A] alternates “down”
while [irow.B] alternates “up”. In this fashion, A interleaves with B, C interleaves with D, etc.

Listing 22: irow.toml

[irow]
A.sample = ''
B.sample = ''
C.sample = ''
D.sample = ''

Indicate how many columns there are.
[col.'1,2,...,4']

1.6.7 [icol.1]

Similar to [col.1], but “interleaved” with the column to the left or right of it. This layout is sometimes used for experi-
ments that may be sensitive to neighbor effects or slight gradients across the plate.

26 Chapter 1. Citation

wellmap, Release 3.4.0

Example:

The following layout interleaves samples between columns. Note that on the rows columns (i.e. B/D/H/F), [icol.1]
alternates “right” while [icol.2] alternates “left”. In this fashion, 1 interleaves with 2, 3 interleaves with 4, etc.

Listing 23: icol.toml

[icol]
1.sample = ''
2.sample = ''
3.sample = ''
4.sample = ''

Indicate how many rows there are.
[row.'A,B,...,D']

1.6.8 [block.WxH.A1]

Specify parameters for a block of wells W columns wide, H rows tall, and with the given well (e.g. “A1”) in the
top-left corner. You can use the pattern syntax to specify multiple blocks at once, e.g. [block.2x2.'A1,A5'] or
[block.2x2.'A1,E5,...,E9'].

Examples:

The following layout defines blocks of various sizes, each representing a different sample:

Listing 24: block.toml

[block.2x2]
A1.sample = ''
A3.sample = ''

[block.4x1]
C1.sample = ''
D1.sample = ''

The following layout uses the pattern syntax to specify the same sample in multiple blocks:

Listing 25: block_pattern.toml

[block.2x2.'A1,C3']
sample = ''

[block.2x2.'A3,C1']
sample = ''

1.6. File format 27

wellmap, Release 3.4.0

1.6.9 [well.A1]

Specify parameters for the given well (e.g. “A1”). You can use the pattern syntax specify multiple wells at once, e.g.
[well.'A1,A3'] or [well.'A1,B3,...,C11'].

Examples:

The following layout specifies samples for two individual wells:

Listing 26: well.toml

[well.A1]
sample = ''

[well.D4]
sample = ''

The following layout uses the pattern syntax to specify the same sample for multiple wells:

Listing 27: well_pattern.toml

[well.'A1,D4,...,D4']
sample = ''

1.6.10 Pattern syntax

You can specify multiple indices for any row, column, block, or well. This can often help reduce redundancy, which in
turn helps reduce the chance of mistakes. The following table shows some examples of this syntax:

Syntax Meaning
[row.A-D] A, B, C, D
[row.'A,C'] A, C
[row.'A-C,F-H'] A, B, C, F, G, H
[row.'A,C,...,G'] A, C, E, G
[col.1-4] 1, 2, 3, 4
[col.'1,3'] 1, 3
[col.'1-3,7-9'] 1, 2, 3, 7, 8, 9
[col.'1,3,...,7'] 1, 3, 5, 7
[well.A1-B2] A1, A2, B1, B2
[well.'A1,A3'] A1, A3
[well.'A1-B2,A5-B6'] A1, A2, B1, B2, A5, A6, B5, B6
[well.'A1,C3,...,E5'] A1, A3, A5, C1, C3, C5, E1, E3, E5

There are three forms of this syntax. The first uses a hyphen to specify a range of positions for a single row, column,
block, or well. The second uses commas to specify multiple arbitrary positions for the same. These two forms can be
used together, if desired. Note that the comma syntax needs to be quoted, because TOML doesn’t allow unquoted keys
to contain commas.

The third form uses ellipses to specify simple patterns. This requires exactly 4 comma-separated elements in exactly
the following order: the first, second, and fourth must be valid indices, and the third must be an ellipsis (”. . . ”). The

28 Chapter 1. Citation

wellmap, Release 3.4.0

first and fourth indices define the start and end of the pattern (inclusive). The offset between the first and second indices
defines the step size. It must be possible to get from the start to the end in steps of the given size.

Note that for wells and blocks, the hyphen ranges and ellipsis patterns can propagate across both rows and columns. In
the case of ellipsis patterns, the second index specifies the step size in both dimensions. Consider the A1,C3,...,E5
example from above: C3 is two rows and two columns away from A1, so this pattern specifies every odd well between
A1 and E5.

1.6.11 Precedence rules

It is possible to specify multiple values for a single experimental parameter in a single well. The following layout,
where [expt] and [well.A1] both specify different samples for the same well, shows a typical way for this to happen:

[expt]
sample = ''

[well.A1]
sample = ''

In these situations, which value is used depends on which well group has higher “precedence”. Below is a list of each
well group, in order from highest to lowest precedence. In general, well groups that are more “specific” have higher
precedence:

• [well]

• [block]

– If two blocks have different areas, the smaller one has higher precedence.

– If two blocks have the same area, the one that appears later in the layout has higher precedence.

• [row]

• [col]

• [irow]

• [icol]

• [expt]

[plate] groups do not have their own precedence. Instead, well groups used within [plate] groups have precedence a
half-step higher than the same group used outside a plate. In other words, [plate.NAME.row.A] has higher precedence
than [row], but lower precedence than [block].

The following layout is contrived, but visually demonstrates most of the precedence rules:

Listing 28: precedence.toml

[plate.X]

[plate.Y]
precedence = 'plate'

[plate.Z.row.A]
precedence = 'plate.row'

[well.A1]
precedence = 'well'

(continues on next page)

1.6. File format 29

wellmap, Release 3.4.0

(continued from previous page)

[block.2x2.A1]
precedence = 'block.2x2'

[block.3x3.A1]
precedence = 'block.3x3'

[row.A]
precedence = 'row'

[col.1]
precedence = 'col'

[expt]
precedence = 'expt'

Specify how many wells to show.
[block.5x5.A1]

Note that the order in which the well groups appear in the layout usually doesn’t matter. It only matters if there are
two well groups with equal precedence, in which case the one that appears later will be given higher precedence. This
situation only really comes up when using patterns. For example, note how earlier values are overridden by later values
in the following layout:

Listing 29: order.toml

[well.A1]
sample = ''

[well.'A1,A2']
sample = ''

[well.A2]
sample = ''

1.7 Python API

wellmap.load(toml_path, *[, data_loader, ...]) Load a microplate layout from a TOML file.
wellmap.show(toml_path[, attrs, color]) Visualize the given microplate layout.

30 Chapter 1. Citation

wellmap, Release 3.4.0

1.7.1 wellmap.load

wellmap.load(toml_path, *, data_loader=None, merge_cols=None, path_guess=None, path_required=False,
extras=False, report_dependencies=False, on_alert=None)

Load a microplate layout from a TOML file.

Parse the given TOML file and return a pandas.DataFrame with a row for each well and a column for each
experimental condition specified in that file. If the data_loader and merge_cols arguments are provided (which
is the most typical use-case), that data frame will also contain columns for any data associated with each well.

Parameters

• toml_path (str,pathlib.Path) – The path to a file describing the layout of one or more
plates. See the File format page for details about this file.

• data_loader (callable) – Indicates that load() should attempt to load the actual data
associated with the plate layout, in addition to loading the layout itself. The argument should
be a function that takes a pathlib.Path to a data file, parses it, and returns a pandas.
DataFrame containing the parsed data. The function may also take an argument named
“extras”, in which case the extras return value (described below) will be provided. Note that
specifying a data loader implies that path_required is True.

• merge_cols (bool,dict) – Indicates whether or not—and if so, how—load() should
merge the data frames representing the plate layout and the actual data (provided by
data_loader). The argument can either be a boolean or a dictionary:

If False (or falsey, e.g. None, {}, etc.), the data frames will be returned separately and not
be merged. This is the default behavior.

If True, the data frames will be merged using any columns that share the same name. For
example, the layout will always have a column named well, so if the actual data also has a
column named well, the merge would happen on those columns.

If a dictionary, the data frames will be merged using the columns identified in each key-value
pair of the dictionary. The keys should be column names from the data frame representing
the plate layout (described below; see the layout return value), and the values should be
column names from the data frame returned by data_loader. Below are some examples of
this argument:

– {'well0': 'Well'}: Indicates that the “Well” column in the data contains zero-
padded well names, like “A01”, “A02”, etc.

– {'row_i': 'Row', 'col_j': 'Col'}: Indicates that the ‘Row’ and ‘Col’ columns
in the data contain 0-indexed coordinates (e.g. 0, 1, 2, . . .) identifying each row and
column, respectively.

Some details and caveats:

– In order to successfully merge two columns, the values in those columns must correspond
exactly. For example, a column that contains unpadded well names like “A1” cannot be
merged with a column that contains padded well names like “A01”. This is why the layout
data frame contains so many redundant columns: to increase the chance that one will
correspond exactly with a column provided by the data. In some cases, though, it may be
necessary for the data_loader function to construct an appropriate merge column.

– The data frame returned by data_loader() must be “tidy”. Briefly, a data frame is tidy if
each of its columns represents a single variable (e.g. time, fluorescence) and each of its
rows represents a single observation.

1.7. Python API 31

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
http://vita.had.co.nz/papers/tidy-data.html

wellmap, Release 3.4.0

– The path column of the layout is automatically included in the merge and never has to be
specified (although it is not an error to do so). This is makes sense because load() itself
knows what path each data frame was loaded from.

• path_guess (str) – Where to look for a data file if none is specified in the given
TOML file. In other words, this is the default value for meta.path. This path is inter-
preted relative to the TOML file itself (unless it’s an absolute path) and is formatted with
a pathlib.Path representing said TOML file. In code, that would be: path_guess.
format(Path(toml_path)). A typical value would be something like '{0.stem}.csv'.

• path_required (bool) – Indicates whether or not the given TOML file must reference one
or more data files. A ValueError will be raised if this condition is not met. Data files found
via path_guess are acceptable for this purpose.

• extras (bool) – If true, return a dictionary containing any key/value pairs present in the
TOML file but not part of the layout. Typically, this would be used to get information per-
taining to the whole analysis and not any wells in particular (e.g. instruments used, preferred
algorithms, plotting parameters, etc.).

• report_dependencies (bool) – If true, return a set of all the TOML files that were read
in the process of loading the layout from the given toml_path. See the description of de-
pendencies below for more details. You can use this information in analysis scripts (e.g. in
conjunction with os.path.getmtime()) to avoid repeating expensive analyses if the un-
derlying layout hasn’t changed.

• on_alert (callable) – A callback to invoke if the given TOML file contains a warning for
the user. The default behavior is to print the warning to the terminal via stderr. If a callback
is provided, it must take two arguments: a pathlib.Path to the TOML file containing the
alert, and the message itself. Note that this could be called more than once, e.g. if there are
included or concatenated files.

Returns

If neither data_loader nor merge_cols were provided:

• layout (pandas.DataFrame) – Information about the plate layout parsed from the given
TOML file. The data frame will have a row for each well and a column for each experimental
condition. In addition, there will be several columns identifying each well:

– plate: The name of the plate for this well. This column will not be present if there are no
[plate] blocks in the TOML file.

– path: The path to the data file associated with the plate for this well. This column will not
be present if no data files were referenced by the TOML file.

– well: The name of the well, e.g. “A1”.

– well0: The zero-padded name of the well, e.g. “A01”.

– row: The name of the row for this well, e.g. “A”.

– col: The name of the column for this well, e.g. “1”.

– row_i: The row-index of this well, counting from 0.

– col_j: The column-index of this well, counting from 0.

If data_loader was provided but merge_cols was not:

• layout (pandas.DataFrame) – See above.

32 Chapter 1. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/os.path.html#os.path.getmtime
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

wellmap, Release 3.4.0

• data (pandas.DataFrame) – The concatenated result of calling data_loader() on every
path specified in the given TOML file. See pandas.concat() for more information on
how the data from different paths are concatenated.

If data_loader and merge_cols were both provided:

• merged (pandas.DataFrame) – The result of merging the layout and data data frames
along the columns specified by merge_cols. See pandas.merge() for more details on the
merge itself. The resulting data frame will have one or more rows for each well (more are
possible if there are multiple data points per well, e.g. a time course), a column for each
experimental condition described in the TOML file, and a column for each kind of data
loaded from the data files.

If extras was provided:

• extras – A dictionary containing any key/value pairs present in the TOML file but not part
of the layout. For example, consider the following TOML file:

a = 1
b = 2
well.A1.c = 3

If we were to load this file with extras=True, this return value would be {'a': 1, 'b':
2}.

If report_dependencies was provided:

• dependencies – A set containing absolute paths to every layout file that was referenced by
toml_path. This includes toml_path itself, and the paths to any included or concatenated
layout files. It does not include paths to data files, as these are included already in the path
column of the layout or merged data frames.

1.7.2 wellmap.show

wellmap.show(toml_path, attrs=None, color='rainbow')
Visualize the given microplate layout.

It’s wise to visualize TOML layouts before doing any analysis, to ensure that all of the wells are correctly anno-
tated. The wellmap command-line program is a useful tool for doing this, but sometimes it’s more convenient to
make visualizations directly from python (e.g. when working in a jupyter notebook). That’s what this function
is for.

Parameters

• toml_path (str,pathlib.Path) – The path to a file describing the layout of one or more
plates. See the File format page for details about this file.

• attrs (str,list) – One or more attributes from the above TOML file to visualize. For ex-
ample, if the TOML file contains something equivalent to well.A1.conc = 1, then “conc”
would be a valid attribute. If no attributes are specified, the default is to display any attributes
that have at least two different values.

• color (str) – The name of the color scheme to use. Each different value for each different
attribute will be assigned a color from this scheme. Any name understood by either colorcet
or matplotlib can be used.

Return type matplotlib.figure.Figure

1.7. Python API 33

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://colorcet.pyviz.org/
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure

wellmap, Release 3.4.0

1.8 R API

API documentation for R is available using the help() system:

> help(load, wellmapr)
> help(show, wellmapr)

1.9 Command-line usage

The wellmap package comes with a command-line tool (also called wellmap) that displays a visual representation of
the plate layout described by a TOML file. This is meant to help catch mistakes, which can be easy to make in complex
layouts.

For more information on this command and its options, run:

$ wellmap -h
Visualize the plate layout described by a wellmap TOML file.

Usage:
wellmap <toml> [<attr>...] [-o <path>] [-p] [-c <color>] [-f]

Arguments:
<toml>

TOML file describing the plate layout to display. For a complete
description of the file format, refer to:

https://wellmap.readthedocs.io/en/latest/file_format.html

<attr>
The name(s) of one or more attributes from the above TOML file to
project onto the plate. For example, if the TOML file contains
something equivalent to `well.A1.conc = 1`, then "conc" would be a
valid attribute.

If no attributes are specified, the default is to display any
attributes that have at least two different values. For complex
layouts, this may result in a figure too big to fit on the screen.
The best solution for this is just to specify a smaller number of
attributes to focus on.

Options:
-o --output PATH

Output an image of the layout to the given path. The file type is
inferred from the file extension. If the path contains a dollar sign
(e.g. '$.svg'), the dollar sign will be replaced with the base name of
the <toml> path.

-p --print
Print a paper copy of the layout, e.g. to reference when setting up an
experiment. The default printer for the system will be used. To see
the current default printer, run: `lpstat -d`. To change the default

(continues on next page)

34 Chapter 1. Citation

wellmap, Release 3.4.0

(continued from previous page)

printer, run: `lpoptions -d <printer name>`. When printing, the
default color scheme is changed to 'dimgray'. This can still be
overridden using the '--color' flag.

-c --color NAME
Use the given color scheme to illustrate which wells have which
properties. The given NAME must be one of the color scheme names
understood by either `matplotlib` or `colorcet`. See the links below
for the full list of supported colors, but some common choices are
given below. The default is 'rainbow':

rainbow: blue, green, yellow, orange, red
viridis: purple, green, yellow
plasma: purple, red, yellow
coolwarm: blue, red
tab10: blue, orange, green, red, purple, ...
dimgray: gray, black

Matplotlib colors:
https://matplotlib.org/examples/color/colormaps_reference.html

Colorcet colors:
http://colorcet.pyviz.org/

-f --foreground
Don't attempt to return the terminal to the user while the GUI runs.
This is meant to be used on systems where the program crashes if run in
the background.

1.10 Versions

Wellmap uses semantic versioning. Briefly, this means that minor version upgrades (e.g. 1.1 to 1.2) will never break
any existing code, while major version upgrades (e.g. 1.1 to 2.0) might.

1.10.1 v3.4.0 (2022-05-08)

Feature

• Add hyphen range syntax (eaf2c73)

1.10. Versions 35

https://semver.org/
https://github.com/kalekundert/wellmap/commit/eaf2c73520881bda7b28ea495bcc044d8b7fad88

wellmap, Release 3.4.0

1.10.2 v3.3.1 (2022-03-26)

Fix

• Don’t drop nans too aggressively (a001c8f)

1.10.3 v3.3.0 (2022-01-31)

Feature

• Allow show(attrs=...) to be a string (0572a61)

1.10.4 v3.2.1 (2021-11-10)

Fix

• Correct color concave well groups (04015bf)

1.10.5 v3.2.0 (2021-11-09)

Feature

• Pick colors based on well coordinates (90a25a1)

1.10.6 v3.1.1 (2021-10-11)

Fix

• Better error checking (eea82a3)

1.10.7 v3.1.0 (2021-10-07)

Feature

• Allow included layouts to be shifted (2ad8b59)

Documentation

• Fix typo (5139943)

36 Chapter 1. Citation

https://github.com/kalekundert/wellmap/commit/a001c8f297d85b5ca5986d8569c29197f9d4bc34
https://github.com/kalekundert/wellmap/commit/0572a610de3e1559e4029e0bb7c505e2a07d7ae9
https://github.com/kalekundert/wellmap/commit/04015bf5d76377ccb53eabd5f0a0393137f267de
https://github.com/kalekundert/wellmap/commit/90a25a17455b2b53d973b7a3e867be9943b32bdd
https://github.com/kalekundert/wellmap/commit/eea82a394ae20789731d0068ce096f7cfb6a483d
https://github.com/kalekundert/wellmap/commit/2ad8b59bc6cae04b9a83645959bee30fdf668aa2
https://github.com/kalekundert/wellmap/commit/51399430fd378d0863caeb9052fdc0b20f87f71b

wellmap, Release 3.4.0

1.10.8 v3.0.1 (2021-10-01)

Fix

• Allow multiple patterns to define the same well (d0d852c)

Documentation

• Add link the semantic versioning website (eb2f5f2)

• Include the change log in the online docs (727f03f)

• Revise manuscript after peer review (0823802)

• Briefly describe each alternative sfotware (336b47a)

1.10.9 v3.0.0 (2021-04-11)

Feature

• Simplify the extras argument (7558f7a)

Breaking

• Scipts using the extras argument will need to be corrected. (7558f7a)

Documentation

• Fix the Bradford assay example (6e06004)

1.10.10 v2.1.0 (2021-01-13)

Feature

• Teach wellmap how to print layouts (2e1cfe4)

Documentation

• Add an “R API” section (4bea19a)

• Consolidate the table in the pattern section (4588a86)

• Reformat manuscript for BMC Res Notes (b689d26)

• Tweak wording (f7ece3a)

• Consistently use lower-case for “python” (b850377)

• Translate the “Basic usage” tutorial for R (fce3931)

• Tweak manuscript (7469ae7)

1.10. Versions 37

https://github.com/kalekundert/wellmap/commit/d0d852c6fcffc47ec063ffaab163fe0dbcdff13b
https://github.com/kalekundert/wellmap/commit/eb2f5f23d1847c60a9f037e312a030dad4552b30
https://github.com/kalekundert/wellmap/commit/727f03fdfc255dc133a6198f96c20569ee9f386f
https://github.com/kalekundert/wellmap/commit/08238027018c3afddd0bad5b2d4339800329b8d6
https://github.com/kalekundert/wellmap/commit/336b47a1267589bce760f36da832d4aaf60258bd
https://github.com/kalekundert/wellmap/commit/7558f7ad18917fc3ef9beef60921b7fbe94ff0a3
https://github.com/kalekundert/wellmap/commit/7558f7ad18917fc3ef9beef60921b7fbe94ff0a3
https://github.com/kalekundert/wellmap/commit/6e060040cb40d2611866c2e38d88f74dfadb50a3
https://github.com/kalekundert/wellmap/commit/2e1cfe4ffb06b69a21a61037b926f60d8175a496
https://github.com/kalekundert/wellmap/commit/4bea19a07ffcd606f9a0a272c8708001a3a3701b
https://github.com/kalekundert/wellmap/commit/4588a864fa9541b98e321f95bb21bdcd1ed99d2c
https://github.com/kalekundert/wellmap/commit/b689d263e306194ed48427ca0d3e69b4212c1736
https://github.com/kalekundert/wellmap/commit/f7ece3a36aad59ff3796673cb5c459a89bc730ec
https://github.com/kalekundert/wellmap/commit/b850377b1d655d7a0a63ab62210a670146fa369d
https://github.com/kalekundert/wellmap/commit/fce39310e808b133d92367a7677d925683f77ef6
https://github.com/kalekundert/wellmap/commit/7469ae7a334bc19d7209dd1f621a7b68204bd8d8

wellmap, Release 3.4.0

38 Chapter 1. Citation

PYTHON MODULE INDEX

w
wellmap, 1

39

wellmap, Release 3.4.0

40 Python Module Index

INDEX

C
command-line program

wellmap, 34

L
load() (in module wellmap), 31

M
module

wellmap, 1

S
show() (in module wellmap), 33

W
wellmap

command-line program, 34
module, 1

41

	Citation
	Basic usage with python
	Basic usage with R
	Example layouts
	β-galactosidase assay
	Bradford assay
	qPCR timecourse

	Related software
	plater
	plate_map_to_list
	Bioplate
	Plateo
	cellHTS
	platetools

	Getting help
	File format
	[meta]
	meta.path
	meta.paths
	meta.include
	meta.concat
	meta.alert

	[expt]
	[plate.NAME]
	[row.A]
	[col.1]
	[irow.A]
	[icol.1]
	[block.WxH.A1]
	[well.A1]
	Pattern syntax
	Precedence rules

	Python API
	wellmap.load
	wellmap.show

	R API
	Command-line usage
	Versions
	v3.4.0 (2022-05-08)
	Feature

	v3.3.1 (2022-03-26)
	Fix

	v3.3.0 (2022-01-31)
	Feature

	v3.2.1 (2021-11-10)
	Fix

	v3.2.0 (2021-11-09)
	Feature

	v3.1.1 (2021-10-11)
	Fix

	v3.1.0 (2021-10-07)
	Feature
	Documentation

	v3.0.1 (2021-10-01)
	Fix
	Documentation

	v3.0.0 (2021-04-11)
	Feature
	Breaking
	Documentation

	v2.1.0 (2021-01-13)
	Feature
	Documentation

	Python Module Index
	Index

