

wellmap — File format for 96-well plate layouts

[image: _images/wellmap.svg]
 [https://pypi.python.org/pypi/wellmap][image: _images/wellmap1.svg]
 [https://pypi.python.org/pypi/wellmap][image: _images/R-3.0,4.0-blue.svg]
 [http://wellmap.readthedocs.io/en/latest/basic_usage_with_r.html][image: _images/12d4197169172bd814e262a340cc49e38d24568a.svg]
 [http://wellmap.readthedocs.io/en/latest/][image: _images/master.svg]
 [https://github.com/kalekundert/wellmap/actions][image: _images/wellmap2.svg]
 [https://coveralls.io/github/kalekundert/wellmap?branch=master]Many medium-throughput experiments produce data in 24-, 96-, or 384-well plate
format. However, it can be a challenge to keep track of which wells (e.g. A1,
B2, etc.) correspond to which experimental conditions (e.g. genotype, drug
concentration, replicate number, etc.) for large numbers of experiments. It
can also be a challenge to write analysis scripts flexible enough to handle the
different plate layouts that will inevitably come up as more and more
experiments are run.

The wellmap package solves these challenges by introducing a TOML-based file
format [https://wellmap.readthedocs.io/en/latest/file_format.html] that succinctly describes the organization of wells on plates. The
file format is designed to be human-readable and -writable, so it can serve as
a standalone digital record. The file format can also be easily parsed in
python and R to help write analysis scripts that will work regardless of how
you (or your collaborators) organize wells on your plates.

Citation

Kundert, K. Wellmap: a file format for microplate layouts. BMC Res Notes
14, 164 (2021). https://doi.org/10.1186/s13104-021-05573-0

Basic usage with python

The following steps show how to get started with wellmap in python:

	Install wellmap from PyPI. Note that python≥3.6 is required:

$ pip install wellmap

	Write a TOML file describing the layout of an experiment. For
example, the following layout might be used for a standard curve:

std_curve.toml

The [row] and [col] sections specify which conditions are being tested in
which wells. The fields within these sections (e.g. `dilution`, `replicate`)
can be anything. If your plates aren't organized by row and column, there
are other ways to define the plate layout; see the "File format" section for
more details.

[col]
1.dilution = 1e5
2.dilution = 1e4
3.dilution = 1e3
4.dilution = 1e2
5.dilution = 1e1
6.dilution = 1e0

[row]
A.replicate = 1
B.replicate = 2
C.replicate = 3

	Confirm that the layout is correct by using the wellmap command-line
program to produce a visualization of the layout. This is an important step,
because it’s much easier to spot mistakes in the visualization than in the
layout file itself.

$ wellmap std_curve.toml

This map shows that:

	Each row is a different replicate.

	Each column is a different dilution.

[image: _images/std_curve_map.svg]
It is also possible to create maps like this directly from python, which may be
useful in interactive sessions such as Jupyter notebooks:

>>> import wellmap
>>> wellmap.show("std_curve.toml")
<Figure size 321.203x255 with 4 Axes>

	Load the data from the experiment in question into a tidy [https://www.jstatsoft.org/article/view/v059i10] data frame. Tidy
data are easier to work with in general, and are required by wellmap in
particular. If you aren’t familiar with the concept of tidy data, this
article [https://tomaugspurger.github.io/modern-5-tidy] is a good introduction. The basic idea is to ensure that:

	Each variable is represented by a single column.

	Each observation is represented by a single row.

If possible, it’s best to export data from the instrument that collected it
directly to a tidy format. When this isn’t possible, though, you’ll need to
tidy the data yourself. For example, consider the following data (which
corresponds to the layout from above). This is qPCR data, where a higher
\(C_q\) value indicates that less material is present. The data are shaped
like the plate itself, e.g. a row in the data for every row on the plate, and a
column in the data for every column on the plate. It’s not uncommon for
microplate instruments to export data in this format.

std_curve.csv

	Cq

	1

	2

	3

	4

	5

	6

	A

	24.180858612060547

	20.74011993408203

	17.183801651000977

	13.774299621582031

	10.29498291015625

	6.967061996459961

	B

	24.15711784362793

	20.77970314025879

	17.171794891357422

	13.768831253051758

	10.362966537475586

	6.870273113250732

	C

	24.238229751586914

	20.78700828552246

	17.147598266601563

	13.779314041137695

	10.292966842651367

	6.735703945159912

Below is the code to load this data into a tidy pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] with the
following columns:

	row: A letter identifying a row on the microplate, e.g. A-H

	col: A number identifying a column on the microplate, e.g. 1-12

	Cq: The \(C_q\) value measured for the identified well.

>>> import pandas as pd
>>> def load_cq(path):
... return (pd
... .read_csv(path)
... .rename(columns={'Cq': 'row'})
... .melt(
... id_vars=['row'],
... var_name='col',
... value_name='Cq',
...)
...)
>>> data = load_cq('std_curve.csv')
>>> data
 row col Cq
0 A 1 24.180859
1 B 1 24.157118
2 C 1 24.238230
3 A 2 20.740120
4 B 2 20.779703
5 C 2 20.787008
6 A 3 17.183802
7 B 3 17.171795
8 C 3 17.147598
9 A 4 13.774300
10 B 4 13.768831
11 C 4 13.779314
12 A 5 10.294983
13 B 5 10.362967
14 C 5 10.292967
15 A 6 6.967062
16 B 6 6.870273
17 C 6 6.735704

	Use wellmap.load() to associate the labels specified in the TOML file (e.g. the
dilutions and replicates) with the experimental data (e.g. the \(C_q\)
values). This process has three steps:

	Load a data frame containing the data (see above).

	Load another data frame containing the labels.

	Merge the two data frames.

For the sake of clarity and completeness, we will first show how to perform
these steps manually. Practically, though, it’s easier to
let wellmap perform them automatically.

Manual merge

Use the wellmap.load() function to create a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] containing the
information from the TOML file. This data frame will have columns for each
label we specified: replicate, dilution. It will also have six columns
identifying the wells in different ways: well, well0, row, col,
row_i, col_j. These columns are redundant, but this redundancy makes it
easier to merge the labels with the data. For example, if the wells are named
“A1,A2,…” in the data, the well column can be used for the merge. If the
wells are named “A01,A02,…”, the well0 column can be used instead. If the
wells are named in some non-standard way, the row_i and col_j columns can
be used to calculate an appropriate merge column.

>>> import wellmap
>>> labels = wellmap.load('std_curve.toml')
>>> labels
 well well0 row col row_i col_j replicate dilution
0 A1 A01 A 1 0 0 1 100000.0
1 A2 A02 A 2 0 1 1 10000.0
2 A3 A03 A 3 0 2 1 1000.0
3 A4 A04 A 4 0 3 1 100.0
4 A5 A05 A 5 0 4 1 10.0
5 A6 A06 A 6 0 5 1 1.0
6 B1 B01 B 1 1 0 2 100000.0
7 B2 B02 B 2 1 1 2 10000.0
8 B3 B03 B 3 1 2 2 1000.0
9 B4 B04 B 4 1 3 2 100.0
10 B5 B05 B 5 1 4 2 10.0
11 B6 B06 B 6 1 5 2 1.0
12 C1 C01 C 1 2 0 3 100000.0
13 C2 C02 C 2 2 1 3 10000.0
14 C3 C03 C 3 2 2 3 1000.0
15 C4 C04 C 4 2 3 3 100.0
16 C5 C05 C 5 2 4 3 10.0
17 C6 C06 C 6 2 5 3 1.0

Use the pandas.merge() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge] function to associate the labels with the data.
In this case, both data frames have columns named row and col, so
pandas [https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas] will automatically use those for the merge. It is also easy to
merge using columns with different names; see the documentation on
pandas.merge() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge] for more information.

>>> import pandas as pd
>>> df = pd.merge(labels, data)
>>> df
 well well0 row col row_i col_j replicate dilution Cq
0 A1 A01 A 1 0 0 1 100000.0 24.180859
1 A2 A02 A 2 0 1 1 10000.0 20.740120
2 A3 A03 A 3 0 2 1 1000.0 17.183802
3 A4 A04 A 4 0 3 1 100.0 13.774300
4 A5 A05 A 5 0 4 1 10.0 10.294983
5 A6 A06 A 6 0 5 1 1.0 6.967062
6 B1 B01 B 1 1 0 2 100000.0 24.157118
7 B2 B02 B 2 1 1 2 10000.0 20.779703
8 B3 B03 B 3 1 2 2 1000.0 17.171795
9 B4 B04 B 4 1 3 2 100.0 13.768831
10 B5 B05 B 5 1 4 2 10.0 10.362967
11 B6 B06 B 6 1 5 2 1.0 6.870273
12 C1 C01 C 1 2 0 3 100000.0 24.238230
13 C2 C02 C 2 2 1 3 10000.0 20.787008
14 C3 C03 C 3 2 2 3 1000.0 17.147598
15 C4 C04 C 4 2 3 3 100.0 13.779314
16 C5 C05 C 5 2 4 3 10.0 10.292967
17 C6 C06 C 6 2 5 3 1.0 6.735704

Automatic merge

While it’s good to understand how the labels are merged with the data, it’s
better to let wellmap perform the merge for you. Not only is this more
succinct, it also handles some tricky corner cases behind the scenes, e.g.
layouts with multiple data files.

To load and merge the data using wellmap.load(), you need to provide the
following arguments:

	data_loader: A function that accepts a path to a file and returns a
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] containing the data from that file. Note that the
function we wrote in the previous section fulfills these requirements. If
the raw data are tidy to begin with, it is often possible to directly use
pandas.read_csv() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv] or similar for this argument.

	merge_cols: An indication of which columns to merge. In the snippet
below, True means to use any columns that are shared between the two data
frames (e.g. that have the same name). You can also use a dictionary to be
more explicit about which columns to merge on.

Here we also provide the path_guess argument, which specifies that the
experimental data can be found in a CSV file with the same base name as the
layout. It also would’ve been possible to specify the path to the CSV directly
from the TOML file (see meta.path), in which case this argument would’ve been
unnecessary.

>>> df = wellmap.load(
... 'std_curve.toml',
... data_loader=load_cq,
... merge_cols=True,
... path_guess='{0.stem}.csv',
...)
>>> df
 well well0 row ... replicate dilution Cq
0 A1 A01 A ... 1 100000.0 24.180859
1 A2 A02 A ... 1 10000.0 20.740120
2 A3 A03 A ... 1 1000.0 17.183802
3 A4 A04 A ... 1 100.0 13.774300
4 A5 A05 A ... 1 10.0 10.294983
5 A6 A06 A ... 1 1.0 6.967062
6 B1 B01 B ... 2 100000.0 24.157118
7 B2 B02 B ... 2 10000.0 20.779703
8 B3 B03 B ... 2 1000.0 17.171795
9 B4 B04 B ... 2 100.0 13.768831
10 B5 B05 B ... 2 10.0 10.362967
11 B6 B06 B ... 2 1.0 6.870273
12 C1 C01 C ... 3 100000.0 24.238230
13 C2 C02 C ... 3 10000.0 20.787008
14 C3 C03 C ... 3 1000.0 17.147598
15 C4 C04 C ... 3 100.0 13.779314
16 C5 C05 C ... 3 10.0 10.292967
17 C6 C06 C ... 3 1.0 6.735704

[18 rows x 10 columns]

	Analyze the data given the connection between the labels and the data. This
step doesn’t involve wellmap, but is included here for completeness.
The example below makes a linear regression of the data in log-space:

std_curve.py

#!/usr/bin/env python3

import wellmap
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import linregress

def load_cq(path):
 return (pd
 .read_csv(path)
 .rename(columns={'Cq': 'row'})
 .melt(
 id_vars=['row'],
 var_name='col',
 value_name='Cq',
)
)

df = wellmap.load(
 'std_curve.toml',
 data_loader=load_cq,
 merge_cols=True,
 path_guess='{0.stem}.csv',
)

x = df['dilution']
y = df['Cq']
m, b, r, p, err = linregress(np.log10(x), y)

x_fit = np.logspace(0, 5)
y_fit = np.polyval((m, b), np.log10(x_fit))

r2 = r**2
eff = 100 * (10**(1/m) - 1)
label = 'R²={:.5f}\neff={:.2f}%'.format(r2, eff)

plt.plot(x_fit, y_fit, '--', label=label)
plt.plot(x, y, '+')
plt.legend(loc='best')
plt.xscale('log')
plt.xlabel('dilution')
plt.ylabel('Cq')
plt.show()

[image: _images/std_curve_py.svg]
R² is a measure of how well the line fits the data. In this case, the
fit is very good. Note that there are three data points for each
dilution, but they are hard to tell apart because they are almost perfectly
superimposed. Efficiency is a measure of how well the qPCR reaction worked,
or more specifically, how close the amount of DNA came to doubling (as would
be expected) on each cycle. 100% indicates perfect doubling; 94% is a
little on the low side.

Basic usage with R

The following steps show how to get started with wellmapr in R:

	Install wellmapr from GitHub. It’s good to be aware that wellmapr is
written in python and made available to R using the reticulate [https://rstudio.github.io/reticulate/] package.
This detail shouldn’t affect you in normal usage, but may be relevant if the
installation doesn’t go smoothly:

> devtools::install_github("kalekundert/wellmap", subdir="wellmapr")

	Write a TOML file describing the layout of an experiment. For
example, the following layout might be used for a standard curve:

std_curve.toml

The [row] and [col] sections specify which conditions are being tested in
which wells. The fields within these sections (e.g. `dilution`, `replicate`)
can be anything. If your plates aren't organized by row and column, there
are other ways to define the plate layout; see the "File format" section for
more details.

[col]
1.dilution = 1e5
2.dilution = 1e4
3.dilution = 1e3
4.dilution = 1e2
5.dilution = 1e1
6.dilution = 1e0

[row]
A.replicate = 1
B.replicate = 2
C.replicate = 3

	Confirm that the layout is correct by using wellmapr::show() to produce a
visualization of the layout. This is an important step, because it’s much
easier to spot mistakes in the visualization than in the layout file itself.

> wellmapr::show("std_curve.toml")

This map shows that:

	Each row is a different replicate.

	Each column is a different dilution.

[image: _images/std_curve_map.svg]
It’s also possible to create maps like this from the command line, which may be
more convenient in some cases. The best way to do this is to use
reticulate::py_config() [https://rstudio.github.io/reticulate/articles/versions.html] to find the path to the python installation used by
reticulate [https://rstudio.github.io/reticulate/], then to invoke the wellmap command associated with that
installation. The alias is optional, but could be saved in your shell
configuration to make the command easier to remember:

$ Rscript -e 'reticulate::py_config()'
python: /home/kale/.local/share/r-miniconda/envs/r-reticulate/bin/python
libpython: /home/kale/.local/share/r-miniconda/envs/r-reticulate/lib/libpython3.6m.so
pythonhome: /home/kale/.local/share/r-miniconda/envs/r-reticulate:/home/kale/.local/share/r-miniconda/envs/r-reticulate
version: 3.6.10 | packaged by conda-forge | (default, Apr 24 2020, 16:44:11) [GCC 7.3.0]
numpy: /home/kale/.local/share/r-miniconda/envs/r-reticulate/lib/python3.6/site-packages/numpy
numpy_version: 1.18.5
$ alias wellmap=/home/kale/.local/share/r-miniconda/envs/r-reticulate/bin/wellmap
$ wellmap std_curve.toml

	Load the data from the experiment in question into a tidy [https://www.jstatsoft.org/article/view/v059i10] data frame. Tidy
data are easier to work with in general, and are required by wellmapr in
particular. If you aren’t familiar with the concept of tidy data, this
article [https://r4ds.had.co.nz/tidy-data.html] is a good introduction. The basic idea is to ensure that:

	Each variable is represented by a single column.

	Each observation is represented by a single row.

If possible, it’s best to export data from the instrument that collected it
directly to a tidy format. When this isn’t possible, though, you’ll need to
tidy the data yourself. For example, consider the following data (which
corresponds to the layout from above). This is qPCR data, where a higher
\(C_q\) value indicates that less material is present. The data are shaped
like the plate itself, e.g. a row in the data for every row on the plate, and a
column in the data for every column on the plate. It’s not uncommon for
microplate instruments to export data in this format.

std_curve.csv

	Cq

	1

	2

	3

	4

	5

	6

	A

	24.180858612060547

	20.74011993408203

	17.183801651000977

	13.774299621582031

	10.29498291015625

	6.967061996459961

	B

	24.15711784362793

	20.77970314025879

	17.171794891357422

	13.768831253051758

	10.362966537475586

	6.870273113250732

	C

	24.238229751586914

	20.78700828552246

	17.147598266601563

	13.779314041137695

	10.292966842651367

	6.735703945159912

Below is the code to load this data into a tidy tibble [https://tibble.tidyverse.org/] with the following
columns:

	row: A letter identifying a row on the microplate, e.g. A-H

	col: A number identifying a column on the microplate, e.g. 1-12

	Cq: The \(C_q\) value measured for the identified well.

> library(tidyverse)
>
> load_cq <- function(path) {
+ read_csv(path) %>%
+ rename(row = Cq) %>%
+ pivot_longer(
+ !row,
+ names_to = "col",
+ values_to = "Cq",
+)
+ }
> data <- load_cq("std_curve.csv")
> data
A tibble: 18 x 3
 row col Cq
 <chr> <chr> <dbl>
 1 A 1 24.2
 2 A 2 20.7
 3 A 3 17.2
 4 A 4 13.8
 5 A 5 10.3
 6 A 6 6.97
 7 B 1 24.2
 8 B 2 20.8
 9 B 3 17.2
10 B 4 13.8
11 B 5 10.4
12 B 6 6.87
13 C 1 24.2
14 C 2 20.8
15 C 3 17.1
16 C 4 13.8
17 C 5 10.3
18 C 6 6.74

	Use wellmapr::load() to associate the labels specified in the TOML file (e.g.
the dilutions and replicates) with the experimental data (e.g. the \(C_q\)
values). This process has three steps:

	Load a data frame containing the data (see above).

	Load another data frame containing the labels.

	Merge the two data frames.

For the sake of clarity and completeness, we will first show how to perform
these steps manually. Practically, though, it’s easier to
let wellmapr perform them automatically.

Manual merge

Use the wellmapr::load() function to create a tibble [https://tibble.tidyverse.org/] containing the
information from the TOML file. This data frame will have columns for each
label we specified: replicate, dilution. It will also have six columns
identifying the wells in different ways: well, well0, row, col,
row_i, col_j. These columns are redundant, but this redundancy makes it
easier to merge the labels with the data. For example, if the wells are named
“A1,A2,…” in the data, the well column can be used for the merge. If the
wells are named “A01,A02,…”, the well0 column can be used instead. If the
wells are named in some non-standard way, the row_i and col_j columns can
be used to calculate an appropriate merge column.

> layout <- wellmapr::load("std_curve.toml")
> layout
 well well0 row col row_i col_j replicate dilution
1 A1 A01 A 1 0 0 1 1e+05
2 A2 A02 A 2 0 1 1 1e+04
3 A3 A03 A 3 0 2 1 1e+03
4 A4 A04 A 4 0 3 1 1e+02
5 A5 A05 A 5 0 4 1 1e+01
6 A6 A06 A 6 0 5 1 1e+00
7 B1 B01 B 1 1 0 2 1e+05
8 B2 B02 B 2 1 1 2 1e+04
9 B3 B03 B 3 1 2 2 1e+03
10 B4 B04 B 4 1 3 2 1e+02
11 B5 B05 B 5 1 4 2 1e+01
12 B6 B06 B 6 1 5 2 1e+00
13 C1 C01 C 1 2 0 3 1e+05
14 C2 C02 C 2 2 1 3 1e+04
15 C3 C03 C 3 2 2 3 1e+03
16 C4 C04 C 4 2 3 3 1e+02
17 C5 C05 C 5 2 4 3 1e+01
18 C6 C06 C 6 2 5 3 1e+00

Use the dplyr::inner_join() [https://dplyr.tidyverse.org/reference/join.html] function to associate the labels with the data.
In this case, both data frames have columns named row and col, so those
columns are automatically used for the merge (as indicated). It is also easy
to merge using columns with different names; see the documentation on
dplyr::inner_join() [https://dplyr.tidyverse.org/reference/join.html] for more information.

> inner_join(layout, data)
Joining, by = c("row", "col")
 well well0 row col row_i col_j replicate dilution Cq
1 A1 A01 A 1 0 0 1 1e+05 24.180859
2 A2 A02 A 2 0 1 1 1e+04 20.740120
3 A3 A03 A 3 0 2 1 1e+03 17.183802
4 A4 A04 A 4 0 3 1 1e+02 13.774300
5 A5 A05 A 5 0 4 1 1e+01 10.294983
6 A6 A06 A 6 0 5 1 1e+00 6.967062
7 B1 B01 B 1 1 0 2 1e+05 24.157118
8 B2 B02 B 2 1 1 2 1e+04 20.779703
9 B3 B03 B 3 1 2 2 1e+03 17.171795
10 B4 B04 B 4 1 3 2 1e+02 13.768831
11 B5 B05 B 5 1 4 2 1e+01 10.362967
12 B6 B06 B 6 1 5 2 1e+00 6.870273
13 C1 C01 C 1 2 0 3 1e+05 24.238230
14 C2 C02 C 2 2 1 3 1e+04 20.787008
15 C3 C03 C 3 2 2 3 1e+03 17.147598
16 C4 C04 C 4 2 3 3 1e+02 13.779314
17 C5 C05 C 5 2 4 3 1e+01 10.292967
18 C6 C06 C 6 2 5 3 1e+00 6.735704

Automatic merge

While it’s good to understand how the labels are merged with the data, it’s
better to let wellmapr perform the merge for you. Not only is this more
succinct, it also handles some tricky corner cases behind the scenes, e.g.
layouts with multiple data files.

To load and merge the data using wellmapr::load(), you need to provide the
following arguments:

	data_loader: A function that accepts a path to a file and returns a
tibble [https://tibble.tidyverse.org/] containing the data from that file. Note that the function we wrote
in the previous section fulfills these requirements. If the raw data are
tidy to begin with, it is often possible to directly use readr::read_csv() [https://readr.tidyverse.org/reference/read_delim.html]
or similar for this argument.

	merge_cols: An indication of which columns to merge. In the snippet
below, TRUE means to use any columns that are shared between the two data
frames (e.g. that have the same name). You can also use a dictionary to be
more explicit about which columns to merge on.

Here we also provide the path_guess argument, which specifies that the
experimental data can be found in a CSV file with the same base name as the
layout. Note that this argument uses the syntax for string formatting in
python, as described in the API documentation. It also
would’ve been possible to specify the path to the CSV directly from the TOML
file (see meta.path), in which case this argument would’ve been unnecessary.

> wellmapr::load(
+ "std_curve.toml",
+ data_loader = load_cq,
+ merge_cols = TRUE,
+ path_guess = "{0.stem}.csv",
+)
 well well0 row col row_i col_j path replicate dilution Cq
0 A1 A01 A 1 0 0 <environment: 0x56501964bc60> 1 1e+05 24.180859
1 A2 A02 A 2 0 1 <environment: 0x565019653a68> 1 1e+04 20.740120
2 A3 A03 A 3 0 2 <environment: 0x56501965d790> 1 1e+03 17.183802
3 A4 A04 A 4 0 3 <environment: 0x565019665598> 1 1e+02 13.774300
4 A5 A05 A 5 0 4 <environment: 0x56501966f2c0> 1 1e+01 10.294983
5 A6 A06 A 6 0 5 <environment: 0x565019673298> 1 1e+00 6.967062
6 B1 B01 B 1 1 0 <environment: 0x56501967b0a0> 2 1e+05 24.157118
7 B2 B02 B 2 1 1 <environment: 0x565019684dc8> 2 1e+04 20.779703
8 B3 B03 B 3 1 2 <environment: 0x56501968cbd0> 2 1e+03 17.171795
9 B4 B04 B 4 1 3 <environment: 0x5650196968f8> 2 1e+02 13.768831
10 B5 B05 B 5 1 4 <environment: 0x56501969e700> 2 1e+01 10.362967
11 B6 B06 B 6 1 5 <environment: 0x5650196a8428> 2 1e+00 6.870273
12 C1 C01 C 1 2 0 <environment: 0x5650196b0230> 3 1e+05 24.238230
13 C2 C02 C 2 2 1 <environment: 0x5650196b9f58> 3 1e+04 20.787008
14 C3 C03 C 3 2 2 <environment: 0x5650196c3c80> 3 1e+03 17.147598
15 C4 C04 C 4 2 3 <environment: 0x5650196cba88> 3 1e+02 13.779314
16 C5 C05 C 5 2 4 <environment: 0x5650196d57b0> 3 1e+01 10.292967
17 C6 C06 C 6 2 5 <environment: 0x5650196dd5b8> 3 1e+00 6.735704

	Analyze the data given the connection between the labels and the data. This
step doesn’t involve wellmap, but is included here for completeness.
The example below makes a linear regression of the data in log-space:

std_curve.R

library(tidyverse)

load_cq <- function(path) {
 read_csv(path) %>%
 rename(row = Cq) %>%
 pivot_longer(
 !row,
 names_to = "col",
 values_to = "Cq",
)
}

df <- wellmapr::load(
 "std_curve.toml",
 data_loader = load_cq,
 merge_cols = TRUE,
 path_guess = "{0.stem}.csv",
)

ggplot(df, aes(x = dilution, y = Cq)) +
 geom_point() +
 geom_smooth(method = "lm") +
 scale_x_log10()

[image: _images/std_curve_r.svg]

Example layouts

Below are examples of plate layouts used in actual experiments.

	β-galactosidase assay

	Bradford assay

	qPCR timecourse

β-galactosidase assay

The following layout was used to measure the expression of β-galactosidase in
different conditions. Particularly noteworthy are the fit_start_min and
fit_stop_min parameters. In this assay, the concentration of the enzyme is
deduced from a linear fit of absorbance over time (measured using a plate
reader). However, the reaction becomes non-linear as the substrate is
exhausted, which happens at different times for different conditions (i.e.
depending on how much enzyme is expressed). The fit_start_min and
fit_stop_min parameters specify which data points are in the linear regime.
The default is to use the data points between 5–30 min, but several wells use
different cutoffs to better fit the data. This is an good example of how the
fine-grained control provided by wellmap can be used to facilitate
analysis.

beta_gal_assay.toml

[expt]
spacer = 'lz'
ligand = 'theophylline'
fit_start_min = 5
fit_stop_min = 30

[row.A]
growth_time_h = 6
[row.B]
growth_time_h = 8
[row.C]
growth_time_h = 10
[row.D]
growth_time_h = 16

[col.3]
sgrna = 'on'
ligand_mM = 0
[col.4]
sgrna = 'on'
ligand_mM = 30
[col.5]
sgrna = 'off'
ligand_mM = 0
[col.6]
sgrna = 'off'
ligand_mM = 30

[well.B5]
fit_start_min = 0
fit_stop_min = 15
[well.C5]
fit_start_min = 5
fit_stop_min = 15
[well.D5]
fit_start_min = 0
fit_stop_min = 15
[well.D6]
fit_start_min = 0
fit_stop_min = 15

[image: ../_images/beta_gal_assay.svg]

Bradford assay

The following layout was used to measure the concentration of purified protein
mutants using a Bradford assay. There are a few things worth noting for this
example:

	The same standard curve can be used for many experiments, so it makes sense
to keep those concentrations in a separate file, to be included as necessary.
Specifying these concentrations in a single place reduces redundancy and
decreases the chance of making mistakes.

	The wells in the standard curve layout are specified using [block] instead of
[row] and [col]. This makes it safe to include the standard curve in other
layouts, because the blocks won’t grow as more wells are added to the layout.

	The [bradford] block provides information on how to parse and interpret
the data, e.g. what format the data is in and what wavelengths were measured.
This information can be accessed in analysis scripts via the extras
argument to load():

>>> import wellmap
>>> df, ex = wellmap.load('bradford_assay.toml', extras=True)
>>> ex
{'bradford': {'format': 'biotek', 'absorbance': '595/450'}}

bradford_standards.toml

[block.9x3.A1]
standard = true

Pierce BCA Protein Assay Kit
Catalog: Thermo #23225
Manual: tinyurl.com/y8uj7dzy
[block.1x3]
A1.ug_mL = 2000
A2.ug_mL = 1500
A3.ug_mL = 1000
A4.ug_mL = 750
A5.ug_mL = 500
A6.ug_mL = 250
A7.ug_mL = 125
A8.ug_mL = 25
A9.ug_mL = 0

bradford_assay.toml

[meta]
include = 'bradford_standards.toml'

[bradford]
format = 'biotek'
absorbance = '595/450'

[block.3x2]
D1.sample = 'Y37A'
D4.sample = 'D42A'
D7.sample = 'T44A'
D10.sample = 'Y45A'
F1.sample = 'Y37E'
F4.sample = 'T44P'
F7.sample = 'Y45R'

[row]
'D,F'.dilution = 1
'E,G'.dilution = 5

[image: ../_images/bradford_assay.svg]

qPCR timecourse

The following layout was used in a qPCR experiment to measure the change in GFP
expression (compared to the 16S reference gene) over time in different ligand
conditions. Note that the TOML file has very little redundancy, even though
the layout isn’t particularly regular.

qpcr_timecourse.toml

[expt]
sgrna = 'ligRNA-'

[block.4x3.A1]
time = 00:00:00
[block.8x3.A9]
time = 00:02:00
[block.8x3.D1]
time = 00:04:20
[block.8x3.D9]
time = 00:07:00
[block.8x3.G1]
time = 00:10:00
[block.8x3.G9]
time = 00:13:20
[block.8x3.J1]
time = 00:17:00
[block.8x3.J9]
time = 00:21:00
[block.8x3.M1]
time = 00:25:20
[block.8x3.M9]
time = 00:30:00

[col.'1,3,...,17']
primers = 'gfp'
[col.'2,4,...,18']
primers = '16s'

[block.2x3.A1]
ligand = 'apo'
[block.2x3.A3]
ligand = 'holo'
[block.2x12.D1]
ligand = 'apo→apo'
[block.2x15.A9]
ligand = 'apo→apo'
[block.2x12.D3]
ligand = 'apo→holo'
[block.2x15.A11]
ligand = 'apo→holo'
[block.2x12.D5]
ligand = 'holo→apo'
[block.2x15.A13]
ligand = 'holo→apo'
[block.2x12.D7]
ligand = 'holo→holo'
[block.2x15.A15]
ligand = 'holo→holo'

Controls:
[block.2x3.A5]
control = 'no GFP'
[block.2x3.A7]
control = 'no RT'
[block.2x3.A17]
control = 'no cDNA'

[image: ../_images/qpcr_timecourse.svg]

Related software

There are a handful of other packages that may be helpful when working with
microplate experiments. Most of these packages parse plate layouts from
spreadsheet files. In contrast, wellmap parses layout information from text
files using a file format designed specifically for encoding plate layouts. As
a result, these files are:

	Less redundant.

	Easier to read.

	Easier to write.

Wellmap also includes a tool for visualizing plate layouts, which makes it easy
to see if there’s a mistake in your layouts. None of the alternatives provide
a comparable tool.

plater [https://cran.r-project.org/web/packages/plater/vignettes/plater-basics.html]

An R library that parses plate layouts from a spreadsheet files into tidy data
frames. The documentation is excellent and the library is easy to use.
Multiple plates are supported, and in some cases the data and the layout can be
put in the same file. The biggest drawback (other than using spreadsheets to
store layout information and not providing a way to visualize layouts) is that
it cannot be used with python.

plate_map_to_list [https://github.com/craic/plate_maps]

A command-line tool that converts spreadsheet files containing plate layouts
into tidy CSV or TSV files. By virtue of being a command-line program, this
can be used no matter what language your analysis scripts are written in.
However, the command-line approach depends on generated intermediate files,
which may clutter up your directories. More importantly, it’s possible for the
generated files to get out of sync with the original layouts, which could cause
confusion. You also have to merge the layout with the experimental data
yourself, although this is generally a simple operation.

Bioplate [https://hatoris.github.io/BioPlate/basic_usage.html]

A python library that can parse plate layouts from spreadsheet files. However,
no easy way is provided to merge this layout information with experimental
data.

Plateo [https://edinburgh-genome-foundry.github.io/Plateo/index.html]

A python library focused on simulating robotic pipetting protocols. It can
parse plate layouts from spreadsheet files, but does not provide an easy way to
merge this information with experimental data.

cellHTS [http://bioconductor.org/packages/release/bioc/html/cellHTS2.html]

An R library focused on analyzing data from high-throughput RNAi experiments.
The pipeline involves a bespoke file format for describing plate layouts, but
it is not suitable for general use.

platetools [https://cran.r-project.org/web/packages/platetools/platetools.pdf]

An R library that seems related to microplate layouts. I can’t figure out
exactly what it does, though; the documentation is inscrutable.

Getting help

If you find a bug or need help getting wellmap to work, please open a
new issue [https://github.com/kalekundert/wellmap/issues] on Github. Pull requests [https://github.com/kalekundert/wellmap/pulls] are also welcome!

File format

The basic organization of a wellmap file is as follows: first you specify
a group of wells, then you specify the experimental parameters associated with
those wells. For example, the following snippet specifies that well A1 has a
concentration of 100:

[well.A1]
conc = 100

The file format is based on TOML, so refer to the TOML documentation
for a complete description of the basic syntax. Typically, square brackets
(i.e. tables) are used to identify groups of wells and key/value
pairs are used to set the experimental parameters for those
wells. Note however that all of the following are equivalent:

[well.A1]
conc = 100

[well]
A1.conc = 100

well.A1.conc = 100

Most of this document focuses on describing the various ways to succinctly
specify different groups of wells, e.g. [row.A], [col.1], [block.WxH.A1],
etc. There is no need to specify the size of the plate. The data frame
returned by load() will contain a row for each well implied by the layout
file.

Experimental parameters can be specified by setting any key [https://github.com/toml-lang/toml#keys] associated with
a well group (e.g. conc in the above examples) to a scalar value (e.g.
string [https://github.com/toml-lang/toml#string], integer [https://github.com/toml-lang/toml#integer], float [https://github.com/toml-lang/toml#float], boolean [https://github.com/toml-lang/toml#boolean], date [https://github.com/toml-lang/toml#local-date], time [https://github.com/toml-lang/toml#local-time], etc.). There are no
restrictions on what these parameters can be named, although complex names
(e.g. with spaces or punctuation) may need to be quoted. The data frame
returned by load() will contain a column named for each parameter associated
with any well in the layout. Not every well needs to have a value for every
parameter; missing values will be represented in the data frame by nan.

[meta]

Miscellaneous fields that affect how wellmap parses the file. This is the
only section that does not describe the organization of any wells.

Note

All paths specified in this section can either be absolute (if they begin
with a ‘/’) or relative (if they don’t). Relative paths are considered
relative to the directory containing the TOML file itself, regardless of
what the current working directory is.

meta.path

The path to the file containing the actual data for this layout. The
path_guess argument of the load() function can be used to provide a
default path when this option is not specified. If the layout includes
multiple plates (i.e. if it has one or more [plate.NAME] sections), use
meta.paths and not meta.path.

meta.paths

The paths to the files containing the actual data for each plate described in
the layout. You can specify these paths either as a format string or a
mapping:

	Format string: The “{}” will be replaced with the name of the plate (e.g.
“NAME” for [plate.NAME]):

[meta]
paths = 'path/to/file_{}.dat'

	Mapping: Plate names (e.g. “NAME” for [plate.NAME]) are mapped to
paths. This is more verbose, but more flexible than the format string
approach:

[meta.paths]
a = 'path/to/file_a.dat'
b = 'path/to/file_b.dat'

If the layout doesn’t explicitly define any plates (i.e. if it has no
[plate.NAME] sections), use meta.path and not meta.paths.

meta.include

The paths to one or more files that should effectively be copied-and-pasted
into this layout. This is useful for sharing common features between similar
layouts, e.g. reusing a standard curve layout between multiple experiments, or
even reusing entire layouts for replicates with different data paths. This
setting can either be a string, a dictionary, or a list:

	String: The path to a single layout file to include.

	Dictionary: The path to a single layout file in include, with additional
metadata. The dictionary can have the following keys:

	path (string, required): The path to include.

	shift (string, optional): Reposition all the wells in the included
layout. This setting has the following syntax: <well> to <well>. For
example, A1 to B2 would shift all wells down and to the right by one.
Some caveats: the included file cannot use the [irow.A] or [icol.1]
well groups (this restriction may be possible to remove, let me know if it
causes you problems), wells cannot be shifted to negative row or column
indices, and the shift will not apply to any files that are concatenated to
the included file via meta.concat.

	List: The paths to multiple layout files to include. Each item in the list
can either be a string or a dictionary; both will be interpreted as described
above. If multiple files define the same well groups, the later files will
take precedence over the earlier ones.

Examples:

The first layout describes a generic 10-fold serial dilution. The second
layout expands on the first by specifying which sample is in each row. Note
that the first layout could not be used on its own because it doesn’t specify
any rows:

serial_dilution.toml

[col]
1.conc = 1e4
2.conc = 1e3
3.conc = 1e2
4.conc = 1e1
5.conc = 1e0
6.conc = 0

meta_include.toml

[meta]
include = 'serial_dilution.toml'

[row.'A,B']
sample = 'α'

[row.'C,D']
sample = 'β'

[image: _images/meta_include.svg]

The following layouts demonstrate the shift option. Note that both layouts
specify the same 2x2 block, but the block from the included file is moved down
and to the right in the final layout:

shift_parent.toml

[block.2x2.A1]
x = 2

meta_include_shift.toml

[meta.include]
path = 'shift_parent.toml'
shift = 'A1 to C3'

[block.2x2.A1]
x = 1

[image: _images/meta_include_shift.svg]

meta.concat

The paths of one or more TOML files that should be loaded independently of this
file and concatenated to the resulting data frame. This is useful for
combining multiple independent experiments (e.g. replicates performed on
different days) into a single layout for analysis. Unlike meta.include, the
referenced paths have no effect on how this file is parsed, and are not
themselves affected by anything in this file.

The paths can be specified either as a string, a list, or a dictionary. Use a
string to load a single path and a list to load multiple paths. Use a
dictionary to load multiple paths and to assign a unique plate name (its key in
the dictionary) to each one. Assigning plate names in this manner is useful
when concatenating multiple single-plate layouts (as in the example below),
because it keeps the wells from different plates easy to distinguish. Note
that the plate names specified via dictionary keys will override any plate
names specified in the layouts themselves.

Example:

The first two layouts describe the same experiment with different samples. The
third layout combines the first two for easier analysis.

expt_1.toml

[block.4x4.A1]
sample = 'α'

expt_2.toml

[block.4x4.A1]
sample = 'β'

concat.toml

[meta.concat]
X = 'expt_1.toml'
Y = 'expt_2.toml'

[image: _images/concat.svg]

meta.alert

A message that should be printed to the terminal every time this file is
loaded. For example, if something went wrong during the experiment that would
affect how the data is interpreted, put that here to be reminded of that every
time you look at the data.

[expt]

Specify parameters that apply to every well in the layout, e.g. parameters that
aren’t being varied. These parameters are important to record for two reasons
that may not be immediately obvious. First, they contribute to the complete
annotation of the experiment, which will make the experiment easier for others
(including yourself, after a few months) to understand. Second, they make it
easier to write reusable analysis scripts, because the scripts can rely on
every layout specifying every relevant parameter, not only those parameters
that are being varied.

Avoid using this section for metadata such as your name, the date, the name of
the experiment, etc. While this kind of metadata does apply to every well, it
doesn’t affect how the data will be analyzed. Including it here needlessly
bloats the data frame returned by load(). It’s better to put this
information in top-level key/value pairs (e.g. outside of any well group).
Analysis scripts can still access this information using the extras
argument to the load() function, but it will not clutter the data frame used
for analysis.

Note that the wellmap command by default only displays experimental
parameters that have at least two different values across the whole layout,
which normally excludes [expt] parameters. To see such a parameter anyways,
provide its name as one of the <attr> arguments.

Example:

This layout demonstrates the difference between [expt] parameters and
metadata. All of the wells on this plate have the same sample, but the sample
is relevant to the analysis and might vary in other layouts analyzed by the
same script. In contrast, the name and date are just (useful) metadata.

expt.toml

name = "Kale Kundert"
date = 2020-05-26

[expt]
sample = 'α'

Without this, the plate wouldn't have any wells.
[block.4x4.A1]

[image: _images/expt.svg]

[plate.NAME]

Specify parameters that differ between plates. Each plate must have a unique
name, which will be included in the data frame returned by load(). The names
can be any valid TOML key. In other words, almost any name is
allowed, but complex names (e.g. with spaces or punctuation) may need to be
quoted. Note that these names are also used in meta.paths to associate data
with each plate.

Any parameters specified outside of a plate will apply to all plates. Any
key/value pairs specified at the top-level of a plate will apply to the whole
plate. Any well groups specified within a plate (e.g. [plate.NAME.row.A])
will only apply to that plate, and will take precedence over values specified
in the same well groups (e.g. [row.A]) outside the plate. Refer to the
Precedence rules for more information.

Example:

The following layout shows how to define parameters that apply to:

	All plates (conc).

	One specific plate (sample=α).

	Part of one specific plate (sample=β,γ).

plate.toml

[plate.X]
sample = 'α'

[plate.Y.block.2x4.A1]
sample = 'β'

[plate.Y.block.2x4.A3]
sample = 'γ'

[col.'1,3']
conc = 0

[col.'2,4']
conc = 100

Without this, plate X wouldn't have any rows.
[row.'A,B,C,D']

[image: _images/plate.svg]

[row.A]

Specify parameters for all the wells in the given row (e.g. “A”). Rows must be
specified as letters, either upper- or lower-case. If necessary, rows beyond
“Z” can be specified with multiple letters (e.g. “AA”, “AB”, etc.). You can
use the pattern syntax to specify multiple rows at once, e.g.
[row.'A,C,E'] or [row.'A,C,...,G'].

Examples:

The following layout specifies a different sample for each row:

row.toml

[row]
A.sample = 'α'
B.sample = 'β'
C.sample = 'γ'
D.sample = 'δ'

Indicate how many columns there are.
[col.'1,2,3,4']

[image: _images/row.svg]

The following layout uses the pattern syntax to specify the same sample in
multiple rows:

row_pattern.toml

[row.'A,C']
sample = 'α'

[row.'B,D']
sample = 'β'

Indicate how many columns there are.
[col.'1,2,3,4']

[image: _images/row_pattern.svg]

[col.1]

Specify parameters for all the wells in the given column (e.g. “1”). Columns
must be specified using integer numbers, starting from 1. You can use the
pattern syntax to specify multiple columns at once, e.g. [col.'1,3,5']
or [col.'1,3,...,7'].

Examples:

The following layout specifies a different sample for each column:

col.toml

[col]
1.sample = 'α'
2.sample = 'β'
3.sample = 'γ'
4.sample = 'δ'

Indicate how many rows there are.
[row.'A,B,C,D']

[image: _images/col.svg]

The following layout uses the pattern syntax to specify the same sample in
multiple columns:

col_pattern.toml

[col.'1,3']
sample = 'α'

[col.'2,4']
sample = 'β'

Indicate how many rows there are.
[row.'A,B,C,D']

[image: _images/col_pattern.svg]

[irow.A]

Similar to [row.A], but “interleaved” with the row above or below it. This
layout is sometimes used for experiments that may be sensitive to neighbor
effects or slight gradients across the plate.

Example:

The following layout interleaves samples between rows. Note that on the even
columns, [irow.A] alternates “down” while [irow.B] alternates “up”. In
this fashion, A interleaves with B, C interleaves with D, etc.

irow.toml

[irow]
A.sample = 'α'
B.sample = 'β'
C.sample = 'γ'
D.sample = 'δ'

Indicate how many columns there are.
[col.'1,2,...,4']

[image: _images/irow.svg]

[icol.1]

Similar to [col.1], but “interleaved” with the column to the left or right of
it. This layout is sometimes used for experiments that may be sensitive to
neighbor effects or slight gradients across the plate.

Example:

The following layout interleaves samples between columns. Note that on the
rows columns (i.e. B/D/H/F), [icol.1] alternates “right” while [icol.2]
alternates “left”. In this fashion, 1 interleaves with 2, 3 interleaves with
4, etc.

icol.toml

[icol]
1.sample = 'α'
2.sample = 'β'
3.sample = 'γ'
4.sample = 'δ'

Indicate how many rows there are.
[row.'A,B,...,D']

[image: _images/icol.svg]

[block.WxH.A1]

Specify parameters for a block of wells W columns wide, H rows tall, and with
the given well (e.g. “A1”) in the top-left corner. You can use the pattern
syntax to specify multiple blocks at once, e.g. [block.2x2.'A1,A5'] or
[block.2x2.'A1,E5,...,E9'].

Examples:

The following layout defines blocks of various sizes, each representing a
different sample:

block.toml

[block.2x2]
A1.sample = 'α'
A3.sample = 'β'

[block.4x1]
C1.sample = 'γ'
D1.sample = 'δ'

[image: _images/block.svg]

The following layout uses the pattern syntax to specify the same sample in
multiple blocks:

block_pattern.toml

[block.2x2.'A1,C3']
sample = 'α'

[block.2x2.'A3,C1']
sample = 'β'

[image: _images/block_pattern.svg]

[well.A1]

Specify parameters for the given well (e.g. “A1”). You can use the pattern
syntax specify multiple wells at once, e.g. [well.'A1,A3'] or
[well.'A1,B3,...,C11'].

Examples:

The following layout specifies samples for two individual wells:

well.toml

[well.A1]
sample = 'α'

[well.D4]
sample = 'β'

[image: _images/well.svg]

The following layout uses the pattern syntax to specify the same sample for
multiple wells:

well_pattern.toml

[well.'A1,D4,...,D4']
sample = 'α'

[image: _images/well_pattern.svg]

Pattern syntax

You can specify multiple indices for any row, column, block, or well. This can
often help reduce redundancy, which in turn helps reduce the chance of
mistakes. The following table shows some examples of this syntax:

	Syntax

	Meaning

	[row.A-D]

	A, B, C, D

	[row.'A,C']

	A, C

	[row.'A-C,F-H']

	A, B, C, F, G, H

	[row.'A,C,...,G']

	A, C, E, G

	[col.1-4]

	1, 2, 3, 4

	[col.'1,3']

	1, 3

	[col.'1-3,7-9']

	1, 2, 3, 7, 8, 9

	[col.'1,3,...,7']

	1, 3, 5, 7

	[well.A1-B2]

	A1, A2, B1, B2

	[well.'A1,A3']

	A1, A3

	[well.'A1-B2,A5-B6']

	A1, A2, B1, B2, A5, A6, B5, B6

	[well.'A1,C3,...,E5']

	A1, A3, A5, C1, C3, C5, E1, E3, E5

There are three forms of this syntax. The first uses a hyphen to specify a
range of positions for a single row, column, block, or well. The second uses
commas to specify multiple arbitrary positions for the same. These two forms
can be used together, if desired. Note that the comma syntax needs to be
quoted, because TOML doesn’t allow unquoted keys to contain commas.

The third form uses ellipses to specify simple patterns. This requires exactly
4 comma-separated elements in exactly the following order: the first, second,
and fourth must be valid indices, and the third must be an ellipsis (”…”).
The first and fourth indices define the start and end of the pattern
(inclusive). The offset between the first and second indices defines the step
size. It must be possible to get from the start to the end in steps of the
given size.

Note that for wells and blocks, the hyphen ranges and ellipsis patterns can
propagate across both rows and columns. In the case of ellipsis patterns, the
second index specifies the step size in both dimensions. Consider the
A1,C3,...,E5 example from above: C3 is two rows and two columns away from
A1, so this pattern specifies every odd well between A1 and E5.

Precedence rules

It is possible to specify multiple values for a single experimental parameter
in a single well. The following layout, where [expt] and [well.A1] both
specify different samples for the same well, shows a typical way for this to
happen:

[expt]
sample = 'α'

[well.A1]
sample = 'β'

In these situations, which value is used depends on which well group has higher
“precedence”. Below is a list of each well group, in order from highest to
lowest precedence. In general, well groups that are more “specific” have
higher precedence:

	[well]

	[block]

	If two blocks have different areas, the smaller one has higher precedence.

	If two blocks have the same area, the one that appears later in the layout
has higher precedence.

	[row]

	[col]

	[irow]

	[icol]

	[expt]

[plate] groups do not have their own precedence. Instead, well groups used
within [plate] groups have precedence a half-step higher than the same group
used outside a plate. In other words, [plate.NAME.row.A] has
higher precedence than [row], but lower precedence than [block].

The following layout is contrived, but visually demonstrates most of the
precedence rules:

precedence.toml

[plate.X]

[plate.Y]
precedence = 'plate'

[plate.Z.row.A]
precedence = 'plate.row'

[well.A1]
precedence = 'well'

[block.2x2.A1]
precedence = 'block.2x2'

[block.3x3.A1]
precedence = 'block.3x3'

[row.A]
precedence = 'row'

[col.1]
precedence = 'col'

[expt]
precedence = 'expt'

Specify how many wells to show.
[block.5x5.A1]

[image: _images/precedence.svg]

Note that the order in which the well groups appear in the layout usually
doesn’t matter. It only matters if there are two well groups with equal
precedence, in which case the one that appears later will be given higher
precedence. This situation only really comes up when using patterns. For
example, note how earlier values are overridden by later values in the
following layout:

order.toml

[well.A1]
sample = 'α'

[well.'A1,A2']
sample = 'β'

[well.A2]
sample = 'γ'

[image: _images/order.svg]

Python API

	wellmap.load(toml_path, *[, data_loader, ...])

	Load a microplate layout from a TOML file.

	wellmap.show(toml_path[, attrs, color])

	Visualize the given microplate layout.

wellmap.load

	
wellmap.load(toml_path, *, data_loader=None, merge_cols=None, path_guess=None, path_required=False, extras=False, report_dependencies=False, on_alert=None)

	Load a microplate layout from a TOML file.

Parse the given TOML file and return a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] with a row for
each well and a column for each experimental condition specified in that
file. If the data_loader and merge_cols arguments are provided
(which is the most typical use-case), that data frame will also contain
columns for any data associated with each well.

	Parameters

	
	toml_path (str [https://docs.python.org/3/library/stdtypes.html#str],pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to a file describing the layout of one or more plates. See
the File format page for details about this file.

	data_loader (callable) – Indicates that load() should attempt to load the actual data
associated with the plate layout, in addition to loading the layout
itself. The argument should be a function that takes a pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]
to a data file, parses it, and returns a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] containing
the parsed data. The function may also take an argument named
“extras”, in which case the extras return value (described below)
will be provided. Note that specifying a data loader implies that
path_required is True.

	merge_cols (bool [https://docs.python.org/3/library/functions.html#bool],dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indicates whether or not—and if so, how—load() should merge the
data frames representing the plate layout and the actual data (provided
by data_loader). The argument can either be a boolean or a
dictionary:

If False (or falsey, e.g. None, {}, etc.), the data frames
will be returned separately and not be merged. This is the default
behavior.

If True, the data frames will be merged using any columns that
share the same name. For example, the layout will always have a
column named well, so if the actual data also has a column named
well, the merge would happen on those columns.

If a dictionary, the data frames will be merged using the columns
identified in each key-value pair of the dictionary. The keys should
be column names from the data frame representing the plate layout
(described below; see the layout return value), and the values
should be column names from the data frame returned by
data_loader. Below are some examples of this argument:

	{'well0': 'Well'}: Indicates that the “Well” column in the
data contains zero-padded well names, like “A01”, “A02”, etc.

	{'row_i': 'Row', 'col_j': 'Col'}: Indicates that the ‘Row’
and ‘Col’ columns in the data contain 0-indexed coordinates (e.g. 0,
1, 2, …) identifying each row and column, respectively.

Some details and caveats:

	In order to successfully merge two columns, the values in those
columns must correspond exactly. For example, a column that contains
unpadded well names like “A1” cannot be merged with a column that
contains padded well names like “A01”. This is why the layout
data frame contains so many redundant columns: to increase the chance
that one will correspond exactly with a column provided by the data.
In some cases, though, it may be necessary for the data_loader
function to construct an appropriate merge column.

	The data frame returned by data_loader() must be “tidy” [http://vita.had.co.nz/papers/tidy-data.html].
Briefly, a data frame is tidy if each of its columns represents a
single variable (e.g. time, fluorescence) and each of its rows
represents a single observation.

	The path column of the layout is automatically included in the
merge and never has to be specified (although it is not an error to
do so). This is makes sense because load() itself knows what path
each data frame was loaded from.

	path_guess (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to look for a data file if none is specified in the given TOML
file. In other words, this is the default value for meta.path. This
path is interpreted relative to the TOML file itself (unless it’s an
absolute path) and is formatted with a pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] representing said
TOML file. In code, that would be:
path_guess.format(Path(toml_path)). A typical value would be
something like '{0.stem}.csv'.

	path_required (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether or not the given TOML file must reference one or more
data files. A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised if this condition is not
met. Data files found via path_guess are acceptable for this
purpose.

	extras (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, return a dictionary containing any key/value pairs present in
the TOML file but not part of the layout. Typically, this would be
used to get information pertaining to the whole analysis and not any
wells in particular (e.g. instruments used, preferred algorithms,
plotting parameters, etc.).

	report_dependencies (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, return a set of all the TOML files that were read in the
process of loading the layout from the given toml_path. See the
description of dependencies below for more details. You can use
this information in analysis scripts (e.g. in conjunction with
os.path.getmtime() [https://docs.python.org/3/library/os.path.html#os.path.getmtime]) to avoid repeating expensive analyses if the
underlying layout hasn’t changed.

	on_alert (callable) – A callback to invoke if the given TOML file contains a warning for the
user. The default behavior is to print the warning to the terminal via
stderr. If a callback is provided, it must take two arguments: a
pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to the TOML file containing the alert, and the message
itself. Note that this could be called more than once, e.g. if there
are included or concatenated files.

	Returns

	If neither data_loader nor merge_cols were provided:

	layout (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Information about the plate layout
parsed from the given TOML file. The data frame will have a row for
each well and a column for each experimental condition. In addition,
there will be several columns identifying each well:

	plate: The name of the plate for this well. This column will
not be present if there are no [plate] blocks in the TOML file.

	path: The path to the data file associated with the plate for
this well. This column will not be present if no data files were
referenced by the TOML file.

	well: The name of the well, e.g. “A1”.

	well0: The zero-padded name of the well, e.g. “A01”.

	row: The name of the row for this well, e.g. “A”.

	col: The name of the column for this well, e.g. “1”.

	row_i: The row-index of this well, counting from 0.

	col_j: The column-index of this well, counting from 0.

If data_loader was provided but merge_cols was not:

	layout (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – See above.

	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The concatenated result of calling
data_loader() on every path specified in the given TOML file.
See pandas.concat() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat] for more information on how the data from
different paths are concatenated.

If data_loader and merge_cols were both provided:

	merged (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The result of merging the
layout and data data frames along the columns specified by
merge_cols. See pandas.merge() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge] for more details on the
merge itself. The resulting data frame will have one or more rows
for each well (more are possible if there are multiple data points
per well, e.g. a time course), a column for each experimental
condition described in the TOML file, and a column for each kind of
data loaded from the data files.

If extras was provided:

	extras – A dictionary containing any key/value pairs present in
the TOML file but not part of the layout. For example, consider the
following TOML file:

a = 1
b = 2
well.A1.c = 3

If we were to load this file with extras=True, this return
value would be {'a': 1, 'b': 2}.

If report_dependencies was provided:

	dependencies – A set containing absolute paths to every layout
file that was referenced by toml_path. This includes
toml_path itself, and the paths to any included
or concatenated layout files. It does not include
paths to data files, as these are included already in
the path column of the layout or merged data frames.

wellmap.show

	
wellmap.show(toml_path, attrs=None, color='rainbow')

	Visualize the given microplate layout.

It’s wise to visualize TOML layouts before doing any analysis, to ensure
that all of the wells are correctly annotated. The wellmap
command-line program is a useful tool for doing this, but sometimes it’s
more convenient to make visualizations directly from python (e.g. when
working in a jupyter notebook). That’s what this function is for.

	Parameters

	
	toml_path (str [https://docs.python.org/3/library/stdtypes.html#str],pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to a file describing the layout of one or more plates. See
the File format page for details about this file.

	attrs (str [https://docs.python.org/3/library/stdtypes.html#str],list [https://docs.python.org/3/library/stdtypes.html#list]) – One or more attributes from the above TOML file to visualize. For
example, if the TOML file contains something equivalent to
well.A1.conc = 1, then “conc” would be a valid attribute. If no
attributes are specified, the default is to display any attributes that
have at least two different values.

	color (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the color scheme to use. Each different value for each
different attribute will be assigned a color from this scheme. Any
name understood by either colorcet [http://colorcet.pyviz.org/] or matplotlib [https://matplotlib.org/examples/color/colormaps_reference.html] can be used.

	Return type

	matplotlib.figure.Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure]

R API

API documentation for R is available using the help() system:

> help(load, wellmapr)
> help(show, wellmapr)

Command-line usage

The wellmap package comes with a command-line tool (also called
wellmap) that displays a visual representation of the plate layout
described by a TOML file. This is meant to help catch mistakes, which can be
easy to make in complex layouts.

For more information on this command and its options, run:

$ wellmap -h
Visualize the plate layout described by a wellmap TOML file.

Usage:
 wellmap <toml> [<attr>...] [-o <path>] [-p] [-c <color>] [-f]

Arguments:
 <toml>
 TOML file describing the plate layout to display. For a complete
 description of the file format, refer to:

 https://wellmap.readthedocs.io/en/latest/file_format.html

 <attr>
 The name(s) of one or more attributes from the above TOML file to
 project onto the plate. For example, if the TOML file contains
 something equivalent to `well.A1.conc = 1`, then "conc" would be a
 valid attribute.

 If no attributes are specified, the default is to display any
 attributes that have at least two different values. For complex
 layouts, this may result in a figure too big to fit on the screen.
 The best solution for this is just to specify a smaller number of
 attributes to focus on.

Options:
 -o --output PATH
 Output an image of the layout to the given path. The file type is
 inferred from the file extension. If the path contains a dollar sign
 (e.g. '$.svg'), the dollar sign will be replaced with the base name of
 the <toml> path.

 -p --print
 Print a paper copy of the layout, e.g. to reference when setting up an
 experiment. The default printer for the system will be used. To see
 the current default printer, run: `lpstat -d`. To change the default
 printer, run: `lpoptions -d <printer name>`. When printing, the
 default color scheme is changed to 'dimgray'. This can still be
 overridden using the '--color' flag.

 -c --color NAME
 Use the given color scheme to illustrate which wells have which
 properties. The given NAME must be one of the color scheme names
 understood by either `matplotlib` or `colorcet`. See the links below
 for the full list of supported colors, but some common choices are
 given below. The default is 'rainbow':

 rainbow: blue, green, yellow, orange, red
 viridis: purple, green, yellow
 plasma: purple, red, yellow
 coolwarm: blue, red
 tab10: blue, orange, green, red, purple, ...
 dimgray: gray, black

 Matplotlib colors:
 https://matplotlib.org/examples/color/colormaps_reference.html

 Colorcet colors:
 http://colorcet.pyviz.org/

 -f --foreground
 Don't attempt to return the terminal to the user while the GUI runs.
 This is meant to be used on systems where the program crashes if run in
 the background.

Versions

Wellmap uses semantic versioning [https://semver.org/]. Briefly, this means
that minor version upgrades (e.g. 1.1 to 1.2) will never break any existing
code, while major version upgrades (e.g. 1.1 to 2.0) might.

v3.4.0 (2022-05-08)

Feature

	Add hyphen range syntax (eaf2c73 [https://github.com/kalekundert/wellmap/commit/eaf2c73520881bda7b28ea495bcc044d8b7fad88])

v3.3.1 (2022-03-26)

Fix

	Don’t drop nans too aggressively (a001c8f [https://github.com/kalekundert/wellmap/commit/a001c8f297d85b5ca5986d8569c29197f9d4bc34])

v3.3.0 (2022-01-31)

Feature

	Allow show(attrs=...) to be a string (0572a61 [https://github.com/kalekundert/wellmap/commit/0572a610de3e1559e4029e0bb7c505e2a07d7ae9])

v3.2.1 (2021-11-10)

Fix

	Correct color concave well groups (04015bf [https://github.com/kalekundert/wellmap/commit/04015bf5d76377ccb53eabd5f0a0393137f267de])

v3.2.0 (2021-11-09)

Feature

	Pick colors based on well coordinates (90a25a1 [https://github.com/kalekundert/wellmap/commit/90a25a17455b2b53d973b7a3e867be9943b32bdd])

v3.1.1 (2021-10-11)

Fix

	Better error checking (eea82a3 [https://github.com/kalekundert/wellmap/commit/eea82a394ae20789731d0068ce096f7cfb6a483d])

v3.1.0 (2021-10-07)

Feature

	Allow included layouts to be shifted (2ad8b59 [https://github.com/kalekundert/wellmap/commit/2ad8b59bc6cae04b9a83645959bee30fdf668aa2])

Documentation

	Fix typo (5139943 [https://github.com/kalekundert/wellmap/commit/51399430fd378d0863caeb9052fdc0b20f87f71b])

v3.0.1 (2021-10-01)

Fix

	Allow multiple patterns to define the same well (d0d852c [https://github.com/kalekundert/wellmap/commit/d0d852c6fcffc47ec063ffaab163fe0dbcdff13b])

Documentation

	Add link the semantic versioning website (eb2f5f2 [https://github.com/kalekundert/wellmap/commit/eb2f5f23d1847c60a9f037e312a030dad4552b30])

	Include the change log in the online docs (727f03f [https://github.com/kalekundert/wellmap/commit/727f03fdfc255dc133a6198f96c20569ee9f386f])

	Revise manuscript after peer review (0823802 [https://github.com/kalekundert/wellmap/commit/08238027018c3afddd0bad5b2d4339800329b8d6])

	Briefly describe each alternative sfotware (336b47a [https://github.com/kalekundert/wellmap/commit/336b47a1267589bce760f36da832d4aaf60258bd])

v3.0.0 (2021-04-11)

Feature

	Simplify the extras argument (7558f7a [https://github.com/kalekundert/wellmap/commit/7558f7ad18917fc3ef9beef60921b7fbe94ff0a3])

Breaking

	Scipts using the extras argument will need to be corrected. (7558f7a [https://github.com/kalekundert/wellmap/commit/7558f7ad18917fc3ef9beef60921b7fbe94ff0a3])

Documentation

	Fix the Bradford assay example (6e06004 [https://github.com/kalekundert/wellmap/commit/6e060040cb40d2611866c2e38d88f74dfadb50a3])

v2.1.0 (2021-01-13)

Feature

	Teach wellmap how to print layouts (2e1cfe4 [https://github.com/kalekundert/wellmap/commit/2e1cfe4ffb06b69a21a61037b926f60d8175a496])

Documentation

	Add an “R API” section (4bea19a [https://github.com/kalekundert/wellmap/commit/4bea19a07ffcd606f9a0a272c8708001a3a3701b])

	Consolidate the table in the pattern section (4588a86 [https://github.com/kalekundert/wellmap/commit/4588a864fa9541b98e321f95bb21bdcd1ed99d2c])

	Reformat manuscript for BMC Res Notes (b689d26 [https://github.com/kalekundert/wellmap/commit/b689d263e306194ed48427ca0d3e69b4212c1736])

	Tweak wording (f7ece3a [https://github.com/kalekundert/wellmap/commit/f7ece3a36aad59ff3796673cb5c459a89bc730ec])

	Consistently use lower-case for “python” (b850377 [https://github.com/kalekundert/wellmap/commit/b850377b1d655d7a0a63ab62210a670146fa369d])

	Translate the “Basic usage” tutorial for R (fce3931 [https://github.com/kalekundert/wellmap/commit/fce39310e808b133d92367a7677d925683f77ef6])

	Tweak manuscript (7469ae7 [https://github.com/kalekundert/wellmap/commit/7469ae7a334bc19d7209dd1f621a7b68204bd8d8])

 Python Module Index

 w

 		 	

 		
 w	

 	
 	
 wellmap	

Index

 C
 | L
 | M
 | S
 | W

C

 	
 	
 command-line program

 	wellmap

L

 	
 	load() (in module wellmap)

M

 	
 	
 module

 	wellmap

S

 	
 	show() (in module wellmap)

W

 	
 	
 wellmap

 	command-line program

 	module

 nav.xhtml

 Table of Contents

 		
 wellmap — File format for 96-well plate layouts

_static/minus.png

_static/plus.png

_static/file.png

